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A FORTRAN PROGRAM FOR CALCULATING 
THREE-DIMENSIONAL, INVISCID, ROTATIONAL 

FLOWS WITH SHOCK WAVES IN AXIAL 
COMPRESSOR BLADE ROWS - USER'S MANUAL 

William T. Thompkins, Jr. 

Gas Turbine and Plasma Dynamics Laboratory 
Department of Aeronautics and Astronautics 

Massachusetts Institute of Technology 
Cambridge, Massachusetts 

SUMMARY 

A FORTRAN-IV computer program has been developed for the calcula- 

tion of the inviscid transonic/supersonic flow field in a fully three-dimen- 

sional blade passage of an axial compressor rotor or stator. Rotors may have 

dampers (part-span shrouds). MacCormack's explicit time-marching method is 

used to solve the unsteady Euler equations on a finite difference mesh. This 

technique captures shocks and smears them over several grid points. Input 

quantities are blade row geometry, operating conditions and thermodynamic 

quantities. Output quantities are three velocity components, density and 

internal energy at each mesh point. Other flow quantities are calculated 

from these variables. A short graphics package is included with the code, 

and may be used to display the finite difference grid, blade geometry and 

static pressure contour plots on blade-to-blade calculation surfaces or blade 

suction and pressure surfaces. 

Flows in four transonic compressor rotors have been analyzed and 

compared with exit flow field measurements and intra-blade static density 

II 



measurements obtained with a gas fluorescence technique. These comparisons 

have generally shown that the computed flow fields accurately model the 

experimentally determined passage shock positions and overall aerodynamic 

performance. 

The computer code was developed and generally run on a large mini- 

computer system, a Digital Equipment Corporation PDP-U/70, with run times of 

two to three days. The code has also been run on several main-frame com- 

puters (IBM 3033, IBM 360/678, UNIVAC 1110, CDC 7600 and a CRAY-1). Typical 

run times on an IBM 3033 have been found to be 5-10 hours. 
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INTRODUCTION 

For many analysis problems in turbomachinery, an assumption of 

inviscid flow provides sufficiently accurate results for design or develop- 

ment tasks. This situation often arises in calculation of design point per- 

formances for high speed axial compressor blade rows, even though these flows 

may exhibit complex interactions of inviscid and viscous phenomena. An 

accurate inviscid calculation is of great benefit for compressor design since 

viscous and shock losses can both be reduced if the inviscid flow can be pre- 

dicted. The design point performance of high speed axial compressors could 

be greatly improved through the use of an accurate inviscid flow solution, 

without requiring a fully viscous flow solution. 

Classical analytical solutions for these flows have not developed 

either because of the flow character--mixed subsonic-supersonic flow with 

strong shock waves --or because of the intrinsic nonlinear, three-dimensional 

features of transonic flows. For such flows pure numerical procedures can 

usually provide quick, accurate solutions with reasonable cost. The numeri- 

cal procedures and techniques to be described have been specialized for solu- 

tions of inviscid flow in high pressure ratio, high tip-speed axial 

compressor rotors, even though the teclaniques employed arm of much wider 

generality. 

The compressor rotors to be studied are assumed to be isolated 

blade rows which are completely enclosed by hub and tip casings. Since the 

fluid is assumed to be inviscid and each blade in a row is assumed to be 

identical, the flow field about each blade may reasonably be considered to be 

identical. This assumption allows the physical domain of interest to be 



reduced to that bounded by a pair of, blades and the extension of their mean 

camber lines upstream and downstream, as illustrated in Figure 1. This 

region is assumed to extend to upstream and downstream infinity, and the flow 

is assumed to be periodic blade-to-blade. The blade rows of interest have 

several common features: their internal flows have mixed subsonic- 

transonic-supersonic relative Mach numbers, a range of 0.5 to as high as 2.0, 

and they attempt to use moderately strong shock waves as an efficient method 

to transfer energy from the rotating machinery to the fluid flow; their 

internal flow passages are complex three-dimensional shapes in which natural 

bounding surfaces rarely join orthogonally. These characteristics rather 

severely restrict the present choice of numerical solution schemes to time- 

accurate, finite difference solutions of the three-dimensional Euler 

Equations (continuity, inviscid momentum and inviscid energy equation with no 

heat conduction). 

The numerical scheme selected to integrate the equations of motion 

is MacCormack's rsathod.l'L This scheme is an explicit, time-accurate, con- 

ditionally stable method of second order accuracy with good shock capturing 

properties. Shock waves are resolved as regions of high gradients spread 

over about 5 mesh points in the streamwise direction. In a complex flow 

the existence and location of shock waves need not be anticipated but 

develop naturally as the solution proceeds. The penalty paid for this con- 

venience is a loss in spatial resolution of shock waves and some inaccuracy 

in shock jump conditions. Although shock-fitting schemes are an area of 

current research, 394 methods suitable for three-dimensional flows are not yet 

available. 
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In most situations, the time accurate nature of MacCormack's method 

is of little importance since only the steady state solution is of interest. 

Here the integration method is only a convenient iteration scheme to move 

from a rather arbitrary initial condition to the final steady state solution. 

Commonly used initial conditions are an old steady state solution or a quasi- 

meridional start-up procedure provided with the code. 

Finite difference methods are useful for complex equation sets such 

as the Euler or Navier-Stokes equations, but can be effectively used only in 

simple geometric regions. Using finite difference methods for complex 

geome,tries requires adopting coordinate systems or coordinate mappings which 

transform the physical domain into a computational domain of simple shape. 

In this report, a set of simple analytical stretching functions is used to 

map the bounding surfaces into a square computational domain. These trans- 

forms accommodate any hub or tip casing shape and almost any blade shape. 

Best results are obtained for thin leading and trailing edges as are mDst 

often encountered in compressor blade rows. Further work is continuing on 

more general coordinate mappings to provide more accurate solutions for any 

blade geometry. 

The computer codes described in this report represent a radical 

departure in philosophy of large-scale computational projects in the choice 

of computer systems. These codes were developed and production runs made on 

a dedicated minicomputer, a Digital Equipment Corporation PDP-11/70, rather 

than a large main frame computer. These codes have also been run on an IBM 

360/67, an IBM 3033, a UNIVAC 1110, a CDC 7600, and a CRAY-1. It was found 

during development that, at least in the author's opinion, the dedicated 
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minicomputer was a superior code development machine to any main frame com- 

puter. The cost of production code running was also lower than on any 

available main frame computer, with a total cost of about 300 dollars per 

solution. 
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METHOD OF ANALYSIS 

Flow Equations 

For flow calculations in turbomachinery blade passages, a cylindri- 

cal coordinate system is a natural choice since considerable cylindrical sym- 

metry exists, and was selected as a base coordinate system. This system is a 

right-handed one (r, 8, z) which has the positive z coordinate pointing in 

the axial flow direction. Blade rows will be assumed to rotate in the posi- 

tive '3 direction, clockwise when looking downstream. 

A convenient set of three-dimensional inviscid flow equations 

expressed In cylindrical coordinates is found in MacCormack.l These equations 

are in weak conservation law form and may be easily expressed in matrix form 

as: 

where 

rP 

w, 

[I= 

11 
rPug 

rPUz 

rE t 

(1) 

F= 
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G* = 

pug 
p”ruO 
Po;+P H= 

- 

rPu z 

R= 

0 

pui+P 

-pugu, 

0 

0 

- - 

Et = ~k+u’/Z), 2 and u =u; +u; +u2 . z In addition the working fluid will be 

assumed to be a perfect gas with constant thermodynamic properties, Y, ii, 

Cp and C,,. The equation of state may be written as 

P = Pf(Y - 1) (2) 

In order to apply the boundary condition of no flow through the blade 

surface at a constant spatial location a common independent variable trans- 

formation is introduced. 

0' = 0 - ut (3) 

‘The new independent variable is !3’, and w is the rotational speed of 

the blade row. Using thin transform the flow squations become: 

au au 2F aG* aH 
--- - ,%I at’ 

a-1-’ + -Fry + aT + Tg = K (4) 

“C 

(5) 
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where G = G* - wU = 

Pu; + P - wrpug 

PUzUe 

1 

- wrpu z 

ug(Et+P) - orEt 
2 

and the prime superscripts have been dropped for convenience. 

These equations are non-dimensionalized using a reference length, 

L, a reference velocity, aO, and a reference density, pg. The reference 

quantities are in principle arbitrary, but the reference velocity and density 

have been selected to be the stagnation speed of sound and density on the 

inlet tip casing streamline. The reference length remains arbitrary but is 

conventionally selected as the inlet tip casing radius. The new non- 

dimensional variables (primes indicate dimensionless quantities) are: 

length r' =r/L, z'=z/L 

velocity u' = u/a0 

density P ‘= P/PO 

pressure p' = p/p& 

energy e' = ./a2 
0 

rotational speed wy = wL/a 0 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

The reference quantities To and p. are not independent and are 

determined from: 
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To = ai/ yR (12) 

PO = l/Y (13) 

When these quantities are selected, the flow equations in terms of non- 

dimensional variables are identical in form to those in terms of dimensional 

variables, equation (5). The prime superscripts may then be dropped without 

confusion and only nondimensional quantities will be referred to in the 

remaining sections of this report. The Euler flow equations become 

au’ aFf aG’ - atl+ar’fae az’=K 
+ aH’ 

(14) 

P’Ug’ - w’r’p’ 

p’urfll*’ - wr’p’llr’ 

P’U’B 
2 + P- w'r'p'ue' 

P’UzUo’ - u’r’p’uz’ 

ug'(Et'+P) - w'T'E~' 

H= K= 

0 

P’Ug ‘2+Pl 

i 1 
-p’ue’ur’ 

0 

0 
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Transformed Equations 

As is typical in three-dimensional flow solutions, the geometric 

domain in physical space is sufficiently complex to render a direct finite 

difference solution in physical space impractical. The approach adopted here 

to solve the finite difference grid allocation problem is to introduce a set 

of independent variable transformations or coordinate stretchings which map a 

single compressor blade passage into a rectangular parallelepiped. A general- 

ized mapping is indicated by 

(r, 8, z) + (R, 0, X) (15) 

with 

R = R(r, 8, z), 0 = O(r, 8, z), and X = X(r, 8, z) . 

Introducing a coordinate transform modifies the original partial 

differential equations. Using the chain rule for derivatives Equation (14) 

becomes 

aF 3R aF ae aF ax aG aR aG ao aG ax ~+--+~-+--+--+~-+~- 
i3R ar a0 ar ax a2 aR ao ao at3 ax a0 

(16) 

aH aR 
+ aR a2 + 

aH a0 aH ax -- -- --=K 
ao a2 + ax a2 

This equation may be rearranged as: 
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aH aR g!+ --+--+-- 

[ 

aF aR aG aR 

I [ 

aF a0 aG ao aH ao 
aR ar aR a0 aR a2 

+ --+---+-- 
a0 ar ao a0 

I 
a0 a2 

(17) 

+ 

[ 

aF ax + aG ax + aH ax 

I 

-- -- mm 
ax ar ax a0 ax a2 

= x 

Equation (14) is in weak conservation law form, while equation (17) is in 

non-conservation law form after the coordinate transforms have been intro- 

duced. The weak conservation law form may be retained, reference 5 and 6, 

as: 

where 

G ae g+--+Hg r ae 

G aR rn+Hg J 
Y 

it - R/J 

J is the transform Jacobian. 

(18) 

(19) 

(20) 

(21) 

(22) 
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(23) 

These equations may be rewritten in the following form in which the 

contravariant velocity components appear directly. 

rpurUR + rP(aR/ar) 

F=+ r P ueUR 

r p uzuR + rP(aR/ax) 

r P UR(E + P/P> 
\ 

I r P Ux 

r p urUX + rP(ax/ar) 

r P ueUx 

r p uzux + rP(ax/az) 

1: P Ux(E + P/P> 

r p urUO + rP(aO/ar) 

Es+ r p "&j + rP[(ao/ae>/rl 
I 

r p uzuo + rP(ao/az) 

r P Uo(E + P/P) + (or)(rP)[(aEJ/ae)/rl 
\ 

(24) 

(25) 

(26) 
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where 

aR UR = ur ar + r ;ig + Liz z 
[ I 

% aR aR 

[ I 

ax 
'X = 'r Z r [I +> ax ax 

Tcj +% az [ 1 
a0 (u 

'0 = "r 77 [ 1 0 - wr) a0 : a0 
r as +% az L 1 

(27) 

(28) 

As described in reference 6, UR, U8 and Ux are the contravariant 

velocities perpendicular to the R, 0 and X coordinate surfaces. If these 

coordinate surfaces are chosen to coincide with physical boundaries in the 

problem, the no flow through solid surface boundary condition becomes: 

U 
R = 0 on constant R surfaces (30) 

U0 = 0 on constant 0 surfaces (31) 

Ux = 0 on constant X surfaces (32) 

Full conservation law forms (CLF) are generally to be preferred 

over non-conservation law forms (NCLF) on a theoretical basis. CLF contain 

the correct shock jump conditions while NCLF may not. The CLF, when used 

with appropriate spatial differencing, should have superior mass, energy and 

momentum conservation properties. When a CLF finite difference solution is 

summed over a large volume of several mesh cells, the inter-cell flux of 

energy mass, and momentum cancel, thus satisfying the integral conservation 

law properties for the large volume. For flow regions without shock waves, 

CLF solutions and NCLF solutions approach each other as the grid spacing 

decreases, but incorrect shock jump conditions may be predicted by NCLF solu- 

tions even in the limit of infinite grid resolution. 
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For simple Flow problems where shock waves may be aligned with cell 

boundaries, the theoretical advantages of the CLF are easily demonstrated. 

For practical flow problems where shock waves lnay cross cell boundaries, the 

CLF advantages are nkxe difficult to demonstrate. In fact, NCLF solutions 

often appear to give superior results. For this reason, the computer code 

described in this report has the capability to use either the NCLF of 

equation (17) or the weak conservation law form of equation (18). 
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Coordinate Transforms for Compressor Blade Rows 

As was previously discussed, the analysis will be limited to calcu- 

lations for the flow through a single blade passage. The physical flow 

domain is illustrated in Figure 1 and consists of the space bounded by a pair 

of blades and the extension of their mean camber lines upstream and 

downstream of the blade row. The extension region is assumed to extend to 

upstream and downstream infinity, and the flow is assumed to be periodic, 

blade-to-blade, in this region. This physical domain is mapped onto a com- 

putational domain which is a rectangular parallelopiped. The computational 

domain is usually truncated 3 to 5 chords upstream and downstream of the 

blade row. 

Domain Regularizing Functions 

Two mapping functions were chosen: first, one which regularizes the 

physical domain; and second, one which locally increases mesh density near 

the blade leading and trailing edges. The domain regularizing functions are 

given by: 

R= 
' - rhub(z) 

rtip(z) - rhub(Z) 

0 
o= 

- 0 s(r,z) 
ess (r,z) - eps(r,z) 

and 

L 

2. - 
5 = zRecr) 

zte(r> - sRe(r) - Oo5 1 

(33) 

(34) 

(35) 
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Here rhub is the radial position of the hub casing 

rtip is the radial position of the tip casing 

cl 
Ps 

is the theta position of the blade pressure surface 

0 ss is the theta position of the blade suction surface 

zRe is the plan view projection of the blade row leading edge 

z te is the plan view projection of the blade row trailing edge 

A plan view for a typical compressor blade row in both physical 

space and computational space is shown in Figure 2. The hub and tip casings 

and the blade leading and trailing edge lines are mapped to straight lines. 

These mappings are adequate for nearly any compressor flow path. 

Similar views of the physical and computational space for blade to 

blade sections are shown in Figure 3. Here the curved blade shapes are 

mapped to untwisted planes. This mapping appears adequate for thin 

compressor blades but may not be adequate for thick blades with blunt 

trailing edges, as might be encountered in turbine blade rows. 

The effect of an axisymmetric part-span vibration damper or shroud 

can be included by modifying only the coordinate stretching in the r 

direction, Equation (33). A plan view of a typical flow path which includes 

a part-span shroud is shown in Figure 4. This geometry can be treated by 

defining two mapping functions; one function for the physical space below the 

damper (I: < rlower), and a second function for the physical space above the 

damper (r > r 
upper 1. 
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(36) 

Rere, r 
upper 

is a function of (r,z) specifying geometry of upper 

surface of damper, rlower is a function of (r,z) specifying geometry of lower 

surface of damper, and Cl is a constant determining placement of damper in 

computational space. The best value of.Cl is dependent on boundary con- 

dition formulations and will be discussed in a later section. This transform 

maps the damper into a slit in R-5 computational space as shown in Figure 5. 

If the blade leading and trailing edges are not constant z lines 

then near the upstream and downstream edges of the computational domain, the 

grid lines produced by these mappings are skewed with respect to either the 

local streamlines or a constant 2 line. This skewness may be eliminated by 

using the following transform, applied outside the blade row only, which 

allows a constant 5 line to approach a constant z line as z + +co. 

5 = 
- P-zaeg) + pgeg- se] F* 1 - 0.5 

(z te - '!?e ) + CCZtem Zte > + 
0 0 0 

("a, - z >le c2= 

0 Jk 1 

(38) 



4‘, -. 

r 
,$ 

!’ ,’ 
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where Zgeo and z 
-0 

are the axial locations of the blade leading and trailing 

edge at the hub radius 

C2 is a relaxation factor typically equal to 3.0 

z* = 2 - z 
Ile upstream of the blade row, and 

z* = z te - z downstream of the blade row. 

Mesh Packing Function 

A grid distributed uniformly in the (R,@,c) space may be com- 

putationally inefficient since a fine mesh is often desired near the blade 

leading and trailing edges and a coarse mesh is desired near the upstream and 

downstream boundaries. A mesh packing function which satisfies both of the 

requirements Is: 

5 = Ax sinh (KxX) + Bx tan -l[sinh (KxX)] (39) 

A; = sech (Kx)/2K X 

B;= sinh (Kx) tanh (Kx)/2K 
X 

A*, sinh (Kx) + Bz tan -' (sinh (Kx)) 

and Kx is a free parameter which controls the mesh packing. Details on this 

transform are given by Merrington'. 
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THIS transformation from (R,0,5) space to (R,@,X) symmetrically 

packs points near the leading and trailing edges and stretches the domain 

away from the blade row. A typical grid structure having uniform distribu- 

tion in the (R,O,X) space is shown in the physical space in Figure 6 (plan 

view) and Figure 7 (blade-to-blade view). As shown in these two figures, the 

grid system adopted is an offset one in which boundaries are located midway 

between grid lines. This arrangement has certain advantages in implementing 

both hard wall and periodic boundary conditions. These advantages will be 

discussed in a later section. These two figures also show that the blade-to- 

blade grid planes, R-S. or R-X planes, are not curved in the theta direction 

which means that the blade-to-blade lines are not normal to blade surfaces. 

In addition, aR/a6 and ax/a6 are zero as may be seen from Equations (33) and 

(35). 

Numerical Integration Scheme 

Equation (17) or (18) is solved using MacCormack's2 split operator 

finite difference scheme. This is a two step, explicit, second order 

accurate, conditionally stable scheme. The difference equations for the non- 

conservation law forms are: 

R-direction 

Uk dt j ,k,R 
= g 

j,k,R-6R q k R+l - F; k 1 , , , , 
1 

% 

+ dt A K" 
R j ,k,R 

(49) 

(41) 
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B-direction 

U" = Un ao 
j ,k,R 

- g F" 
j,k+l,C - Fn j,k,a s I 

+ G;,k+l,!L-G;,k,!2 H;,k+l,!L- H;,k,a. 
ao 

I I % 

+ bt Ao K;,k,& 

U * 
j ,k,R 

+ Un 
j ,k,R 

- F* 1 i!!2+ 
j,k-l,% ar 

- Gj" k-l R , , H; k R - Hj" k 1 R , 9 , - , I I 
E 

+ 6t AO K;,k,n. + ';,k& 
I 

X-direction 

n 
- Hj,k,R 

ax I 1 z 

(42) 

(43) 

(44) 

n+l U F* 
j ,k,R 

H* 
j ,k& 

where j, k, and g respectively identify the axial, circumferential and radial 

coordinate of a grid point, n indicates the time step, and * indicates an 

intermediate time step. Also 

- 
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F" = F(U*) (46) 

tI* = H(U*) (47) 

K* = K(U*> (48) 

A R=[olooo] (49) 

A0 = [0 0 10 O] (50) 

Equations (40, 42 and 44) are the predictor steps, and equations 

(41, 43 and 45) are the corrector steps. The forward and backward space dif- 

ferences appearing in the predictor and corrector steps are permuted each 

operator execution as suggested by MacCormack. 2 Similar operators are used 

for the conservation law forms. 

For this type of time splitting, the three MacCormack operators 

must be combined in symmetric sequences in order to maintain second order 

accuracy. 298 Denoting equations (41 and 42) as the LK(6t) operator., 

equations (43 and 44) as the LC(gt) operator and equations (45 and 46) as the 

LK(gt) operator, a sequence may be written as: 

Un+2 = [Lp) L0(15t) Ll$26t) L#t) Lpt)l un (51) 

This simple but non-unique sequence advances the solution from time level n&t 

to time level (n+2)6t. 

In order to stabilize the solution along steep gradients of the 

flow quantities, such as across shock waves and near the leading and trailing 

edges, artificial viscosity terms were introduced, that add to the numerical 
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damping of the scheme. The Lapidus' form of these terms was used and for 

LR operator they are: 

zn n 
j,k,R =' ur. -u 

J ,k,R 1 
\ 

I 

n - u -u 
rj,k,R+l 

(52) 

where K is a parameter of order 1 that controls the strength of the artifi- 

cial viscosity terms. Low values of K produce sharp shocks, but result in 

unacceptable oscillations downstream of the shock. High values of K yield 

smooth solutions, but also very wide shocks and strong distortions to the 

inviscid field. A typical value of K is 0.4. 

Each one-dimensional operator is explicit and in the absence of 

artificial damping (Z" 
j ,k,fi 

-0) have the stability conditions: 

for LX 

GtX ' ' 
A 

FZ [$$I + Mr [g]] + 
ax I[ 1 ax- 
aZ+ar [ Jl} (53) 

for LR 

for LO 

(54) 

(55) 
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For calculations with strong shocks, these maximum time steps must be reduced 

by up to 40 per cent to maintain stability. 

For a given calculation 6tX, 6tR and 6te may differ by over an order 

of magnitude, and the optimum value of 6t is selected using the principle 

that the 6t used with each operator be as close as possible to its maximum 

allowed value while maintaining a symmetric sequence. Typical values for 

transonic compressor blade rows are: 

% = 10 6t0 = 20 6tx 
(56) 

A suitable, symmetric sequence in this case would be 

un+20 
j ,k,R = I(L,W?O (Lg(26t)Q20 WL0(26t)? (L#&O] TJ; k & (57) , , 

where the notation (LO(p6t))m means m successive applications of the 

Lo operator with a time step of p times 6t. 
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BOUNDARY CONDITIONS AND SPECIAL TOPICS 

The computational domain illustrated in Figure 8 is bounded by open 

surfaces (flow may cross surfaces), solid walls and inflow-outflow 

boundaries. Formulations and implementation of boundary conditions at each 

surface and Kutta condition are discussed in this section. 

Solid Wall Boundary Conditions 

The solid wall boundary condition appropriate for inviscid flow 

computations is that of zero mass flux through the surface. This condition 

is difficult to impose with uniform numerical accuracy in Euler equation 

simulations because of difficulties in evaluating derivatives of fluid pro- 

perties and velocities at the wall. In potential flow calculations this dif- 

ficulty does not appear since this boundary condition reduces simply to 

derivative of potential in direction normal to wall, being identically zero. 

A concise illustration of the problem is given by considering the 

integration of the continuity equation in two dimensions, as illustrated in 

Figure 9. The continuity equation is: 

ap 
at+ & CPU) + ij$ .(PV> = 0 

or since v : 0 at wall 

ap 
at+ ax -5 (P-9 

(58) 

(59) 
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If the continuity equation is to be numerically integrated using 

an explicit technique, the term & (PU> provides no difficulties but the 

av 

term p F [ II 
I 0 

is difficult to evaluate with more than first order accuracy. 
0 

Using Taylor series: 

V i,l = vi,o + [g] lo 6y + [$] lo $ +mA 

av 

I II 
?,l 

2 
6 v 

ay o= 6y - - 

i 1 
&Y2 

+ + &Y2) 

0 

(60) 

(61) 

No information about the second derivative of v is available to 

enable evaluation to second order accuracy. 

It is important to remember that this difficulty occurs for both 

the conservation and non-conservation law forms of the continuity and energy 

equations. In more complex flow geometries, where some type of body fitted 

coordinate system like that introduced in the previous section is used, this 

problem is not solved, only disguised. 

Several numerical flow solutions have been published using this 

reflection formulation with apparent good results (see references 10 and 11). 

In addition Kreiss 12 has demonstrated that for linear hyperbolic equations it 

is sufficient for global n th order accuracy to maintain n-l th order accuracy 

at the boundaries. The relevance of this statement for the Euler equations 

which are hyperbolic but nonlinear has not been established, but published 

solutions indicate that it may be at least a good guide for boundary con- 

ditions formulation. 
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For simple flows or two-dimensional supersonic flows, the method 

of characteristics may be used to compute flow solutions. Abbett13 has 

published a comparison of several boundary condition approximations coupled 

with second order accurate solution schemes, MacCormack's method in 

particular, with method of characteristic solutions. Abbett found that 

indeed the simple first order accurate scheme for * 
[ II ay 0 

usually provided 

av more accurate answers than more complicated schemes to calculate - 
i II ay 0 with 

second order accuracy. Another important result was that second order 

accurate approximations using one-sided difference expressions often gave 

very poor results. 

It is important to recognize that these problems with specifying 

the solid wall boundary conditions exist only for integrating the fluid 

equations on the solid boundary. To integrate the fluid equations for in- 

terior points only the pressure on the solid boundary must be known. Solid 

boundaries, hub and tip casings or blade surfaces are mapped to coincide 

with coordinate surfaces which means that the contravariant velocity com- 

ponents UR, UC, UX (equations 30, 31, and 32) will be identically zero on 

these surfaces. MacCormack's method or any scheme using centered spatial 

differencing will require either y or E, equation 24 or 26, on the boundary 

but not both. If UR = 0, ?? is determined only by the wall pressure and known 

coordinate derivatives. If UC = 0, 5 is also determined by the wall pressure 

and known coordinate derivatives. 

Fortunately the wall pressure can be calculated using the momentum 

equation in the direction normal to the solid surface. Following reference 

10, the normal momentum equation may be expressed as: 
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(62) 

j ,k,O 

where n is the surface normal, .Q is the blade row rotation speed, us and 

U are streamwise velocity components in the orthogonal boundary layer like T 

coordinate shown in Figure 10, Rs and RT are surface radii of curvature in 

this coordinate system, and (ir, zr) are unit vectors of the base (r,B,z> 

coordinate system. 

To be consistent with MacCormack's second order accurate scheme, 

Cap/ad should be evaluated with second order accuracy- This can be 
j,k,O 

done even though (P>~ k o, (~~)~,k,~ and (~r)~,k,~ are unknown, by using: , , 

(')j,k,O = (')j,k,l 
6n + LY((6n)2 

j ,k,l 

au 
(us) 

S f- 6n + H(6n)2 

j ,k,O 
= (us) 

j ,k,l I I an 
j ,k,l 

au 
(UT> 

j ,W 
= <UT> +- 

j ,k,l i I 

T 
an 6n +B(6n )2 

j ,k,l 

(63) 

(64) 

(65) 

The term (pus2 /Rs) can be approximated by 

( I 1 

I 
(P> j ,k,l 

+ap I ), an dn + s’(6n2) 11 (us21j ,k, 1 
au 

+2us-$ I I 6n + H((sn2) 
',k,l I j,k,l 1 

(66) 
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and so be evaluated with accuracy 8/(6n2) if (so/an> 
j ,k,l 

and 

Ous/Wj k 1 are evaluated with accuracy &(6n>. These derivatives can be 
, , 

evaluated with this accuracy by a number of schemes; simple extrapolation, or 

the first step of MacCormack's method are two examples. The remaining two 

terms p(ut/R,) and R(izxvrel ) may be expressed similarly. 

An important aside at this point is that there is some theoretical 

basis, Kreiss reference 12, for the assumption that (aP/an> need be evaluated 

with only accuracy &&n). This evaluation, using (66) as a guide, requires 

only that we use (p) 
j ,k,O 

= (P> j,k,l, (“~)j k o = (“~)j k 1 and (Ur)j k o = 
9 , , , , , 

6-Q 
j ,k,l- 

A comparative study conducted with reference 14 has shown this par- 

ticular scheme, with first order accurate (aP/an) evaluation, to be the best 

available scheme for mixed supersonic and subsonic flows. For purely super- 

sonic two-dimensional flows, the method of characteristic type boundary for- 

mulations proved best. For purely subsonic irrotational flows, all schemes 

tested were adequate. The scheme proposed here performed well in both flow 

regimes, and for these two-dimensional flow tests almost never required arti- 

ficial damping for stability. 

While (aP/an> is easily calculated numerically, the determination 

of the wall pressure requires that this pressure gradient be expressed in the 

stretched coordinate system (R,O,X). The normal pressure gradient is 

simply the dot product of gradient P and the unit normal vector. 

ap I 1 3; = (VP) . ii (67) 
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The components of n, in physical space, are [y,, yg, y,]. For 

simplicity the pressure calculation on the hub or tip casing will be 

discussed, which means that yo:O. The expanded form of equation (67) is 

or 

Finally the pressure gradient may be expressed as: 

968) 

(69) 

(70) 

This expression for (aP/an> may be considered as defining the components of n 

in the computational space. 

fi = 
camp 

[r 

Y =+y ax ax 
r ar aR 0 ZTE ' I I ' Yr5F+yZTE 11 

Equation (70) expresses the pressure gradient along one grid line, 

(BP/aR), in terms of the normal pressure gradient, cap/an>, and the pressure 

gradient along a second grid line, (aP/BX). The pressure gradient (aP/aR) 

may be used to find the wall pressure. 
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Using the notation of Figure 9, the wall pressure, P 
j ,k,O, 

may be found as: 

P 
j,k,O = P j,k,l is known to :5(h) (72) 

or 

P =1,4p 
j,k,O 3 L j ,k,l 

-P 
j ,k,2 

- 3 [g]j,k,06R] if [$$ iS (73) 

known to 8/(&n2>. Similar relations for the blade surface pressure may be 

derived. 

Problem Areas within the Standard Boundary Formulation 

The standard boundary formulation of equations (62), (70) and (72) 

or (73) while complete suffers from several practical problems which have 

limited its full application. The difficulties are that all boundary points 

are now "linked" and must be solved for simultaneously, that pressure is ill- 

defined at corner points, and that surface radii of curvature, Rs and R T' are 

difficult to calculate accurately. 

The appearance of (aP/aX)j k o in equation (70) is responsible for 
, 3 

linking the boundary points together since it must also be approximated by a 

finite difference expression: 

-P j-l,k,O 
2AX (74) 

for example. This linking problem is quite vexing for a purely explicit cal- 

culation and has been dealt with by the expedient of lagging the calculation 

one time step so that (aP/aX)j k o at time level n is approximated by 
, , 

(awmj k o at time level (n-l). This approximation is quite good for the 
, 9 
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steady state or quasi-steady state problems generally encountered, and has 

also been used with good results in references 10 and 15. 

Corner points in a three-dimensional calculation present a dif- 

ficult problem in these calculations since multiple definition of pressure at 

these points can occur. The standard formulation provides little guidance on 

the proper choice since the bounding surfaces are not orthogonal. The impor- 

tance of proper definitions is illustrated by the disparity in reported solu- 

tions for external flow corner problems in references 16 and 17. The corner 

point problem has, in spite of its importance, been superceded by the problem 

of accurate calculation of surface radii of curvature R, and R . An 7 

illustration of this problem is shown in Figure 11, which shows a typical 

supersonic blade section and the surface radius of curvature calculated from 

manufacturing coordinates using both spline fit procedures and finite dif- 

ference procedures. Curvatures are seen to be quite irregular and even 

discontinuous at x/C = 0.7. These specific problem areas plus general dif- 

ficulty in calculating second derivatives from manufacturing coordinates 

implies that the surface radii of curvature are known to first order accuracy 

at best. 

Since the curvatures are known, with present coordinate 

specifications, to only first order, the first order accurate equations for 

(aP/an) and wall pressure are sufficient. The radii of curvature variations 

do of course cause oscillations in the wall pressure, but more importantly 

oscillations in (aP/axjj k o which is an important term in equation (70). In 
s , 

blade tip sections these errors usually produce unacceptable variations in 

wall pressure and in extreme cases instability. When accurate curvatures are 

available (for example in the calculations presented in references 10 and 18, 
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these problems do not exist; but in order to proceed with calculations for 

less accurately known blade shapes, some further assumption is needed. 

The best practical assumption appears to be evaluating (aP/aX) at 

location II = 1 and not 11 = 0. This assumption, coupled with first order 

accurate evaluation of (aPlan>, is equivalent to evaluating (ZIP/an> on grid 

line R = 1 with the assumption that the streamline radii of curvature are 

equal to R, and Rr. 

Boundary Conditions in a Staggered Grid System 

The flux preserving boundary formulations discussed above have been 

used with the weak conservation law form, equations (18), but a more natural 

grid system for the non-conservation law forms, equations (17) was suggested 

by Roache. 11 This system retains most of the advantages of the flux pre- 

serving boundary conditions while making the imposition of periodic boundary 

conditions of the blade row and the Kutta condition much easier. This mesh 

system and the equations (17) are included in the associated computer codes 

as well as the weak conservation law forms and consistently give good 

results. This mesh system illustrated in Figure 12 has no grid lines on the 

solid boundary, but maintains the solid boundary midway between an interior 

grid line and a dummy grid line. Meaningful fluid quantities are calculated 

only for points interior to the flow and the exterior points are defined only 

to implement the flux preserving boundary conditions. Wall quantities are 

defined as having average values of 

fi,w = + [fi,l + fi,2] 675) 

For the two dimensional example illustrated in Figure 12, dummy values of 

L 
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density, velocities and energy are found from reflection: 

Pin = ‘in ui~ = ui,i e 
i2 

=e i,l v. = 
192 -vi,l (76) 

The pressure is found as in the first mesh systems from equation (70). 

Following Roache, 11 these relations may be seen to be nearly equivalent to 

the flux preserving conditions. 

First, vw = i (vi 2 + vi 1> = 0 as desired. Then wall IMSS flow 
, , 

P 
!pv) = W 

i,lvi,l + pi,2vi,2' = p 
2 

J 
i,lvw = 0 as desired. (77) 

Next wall momentum flux 

(PV’)w = + Pi lv; 1 + PiJVf2 
[ I = Pi pf i # 0 (78) 

, 9 , , , 

Thus this formulation does not directly conserve normal momentum flux. As 

Roache" points out, this flux term is still consistent with the original 

equation in the limit of (6x,&y) + 0. Evaluating the momentum flux term as 

would occur in any centered explicit scheme yields: 

$ (pv?) 
w+l 

=-$ 
[ 
(PV2)&L - (Pv2&+~ = & 

2 1 [ 2 
(Pv2)w+iL - (Pv2)w+l 

2 1 
= y& (PV2)&L - Pw+l I [ VW +iG!L 

2 2 ay I + d(6y)2 
W Jl 

(ov2)w++ .2 
av = 

6Y 
- P 

[ ill w+l ay 
+ + c'(Sy2) 

W I 
(79) 
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as (6~) + 0, 2 ay (pv2)i,l+ as desired, so that system is consistent. 

Periodic Boundaries 

One advantage of the staggered grid system is the logical simplifi- 

cation it brings to periodic boundaries as well as to leading and trailing 

edge conditions. This grid system is illustrated in Figure 13 for the blade- 

to-blade plane. Since no grid points are on the blade boundary, there are 

no stagnation streamline like grid lines which divide and go around a blade. 

Since the X and R grid stretchings are independent of 0, the blade-to-blade 

running grid lines remain at constant (r,z) positions. The periodicity con- 

ditions are implemented simply by using the fact that the conditions at k=l 

are those of k=NTH-1 and conditions at k=NTH are those of k=2 as shown in 

Figure 13. 

For the nonstaggered grid illustrated in Figure 9, periodicity may 

be maintained by: 

A* An 
u ? 6t An 

j,NTH,R = j,NTH,R 
-- 

60 
i 
Gj,NTH,P, - Gj,NTH-l,R 

I 

A* 
U 

j ,l,R 
=p 

j ,l,R 
- 2" 

j,NTH-l,R 
I (80) 

and 

An+1 U j,NTH,R 
= 0.54n 

I 
j ,mH,R 'y,NTH,i 

,1 
(81) 

An+1 
U j,l,E = 

0.5* on 

L j ,l,R 
+iY -ao 

j ,l,R 
6t q* 1’ 

I 
j ,2,R 

- e* j,l R J1 
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If Un 
j ,l,R = 3 NTH a' the periodicity condition, then v"+l 

, , j,l, g 

Upstream or Inflow Boundary Conditions 

Work described in this report has concentrated on isolated tran- 

sonic compressor rotors for which it is difficult to establish proper inflow 

upstream boundary conditions. It is well known that the bow shock system of 

such rotors produces an upstream disturbance that, while small, propagates 

far upstream as an acoustic disturbance. Two different studies have con- 

centrated on this problem, reference 19 for small disturbance theories and 

reference 20 for full Euler equation simulations. These studies adopted a 

common model, that of an isolated rotor operating in an infinite duct. The 

flow upstream is assumed to obey linear potential equations with the near 

field and the far-field potentials matched on a surface several chords 

upstream of the rotor. The upstream potential is expressed as the sum of 

three components: a uniform axial flow, a two dimensional axisymmetric per- 

turbation and a three dimensional perturbation. 

@ 4 = 
up uniform + 'axi (r,Z> + $3D(r,e,Z) (82) 

Extensive simulations for one rotor geometry in reference 19 using non- 

reflecting boundary conditions showed that if the matching plane was located 

three or more axial chords upstream then setting $3D(r,B,Z)G0 was an 

adequate approximation for the near-field solution. These same simulations 

also demonstrated that the axisymmetric disturbance remained important even 
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three chords upstream. Nearly the same conclusions were reached in reference 

20 for two different configurations. 

These potential flow results suggest that if computational domains 

extend at least 4 to 5 chords upstream of an isolated rotor then it is not 

necessary to model either the three-dimensional or axisymmetric disturbances. 

Computational domains of this extent greatly increase computation times and 

domains extending no more than 2 to 3 chords upstream are desired for reason- 

able computation times. Computational domains of this extent require that 

the axisymmetric disturbances be modeled with reasonable accuracy. 

A simple upstream flow model which can be used to simulate either 

potential or axisymmetric rotational upstream flows was proposed in reference 

10. This model represents the upstream flow as an unsteady axisymmetric base 

flow plus a more general but small disturbance. For the boundary conditions 

adopted for this report, the small disturbance will be neglected; in the 

potential flow case this is equivalent to neglecting $3D(r,f3,Z). The 

unsteady base flow is assumed to evolve from a steady axisymmetric 

"far-upstream" base flow, which is partially specified and partially computed 

from the interior solution. These boundary conditions are derived by repre- 

senting the velocity as: 

7 = V(t,r,z) (33) 

the pressure as: 

P = P(t,r,z) (54) 
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and the density as: 

P = p(t,r,z> (85) 

Note that this definition will include both +uniform and +axi from reference 

19 in the base flow To and PO. 

The equations describing the base flow are continuity and the three 

momentum equations and continuity: 

D7 
Dt 

=+ 

and 
z + (pV> = 0 

(86) 

(87) 

The base flow is also assumed to be isentropic. 

Using as a coordinate system the modified cylindrical coordinate 

system shown below, the equation of motion may be written in terms of the 

tangential velocity and the meridional velocity, 

A 
iirn = Vrir + Vziz 

The equations of motion written in a general orthogonal curvilinear coordinate 

system are 

(hmhePun) + a(hnhgPum) + ~(hnhmoue) = 0 
am a0 3 

au u aUn + urn aUn + UQ sun + UnUm ahn + unuQ ahn n+ n 
at 

-- -- -- 
hn an hm am hg ae hnh,am ‘nnhgm 

(88) 
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2 u ah -m m- -- 
h,hm an 

au, + u au8 + u n 
x- hn an 

au@ + uQ au, + "@urn ahe + UBUn ahe 
-- -- -__ 

h: am he a0 
-- -- 
hehm am hghn an 

u2 ah u2 ah -m m- n -- -- 
hmhg 38 

n=-l& 
hnhg 20 phg ae 

aum + un auml-um au 

at 
m+ ---- 

hn an hm am 
uQ aum + UmUn ahm + UmUe ahm -- -__ 
he ae hm hnan 

-- 
hmhg ae 

U; ahe U; ahn 
--- 

hmhe am 
lit!? 

-h,hgam=-- phm am 

Since un 
a 

= 0, by definition and x = 0 by assumption, these 

equations reduce for the base flow to, 

13.l -- 
phm am 

+pum[ hih 
a (hnhe> 

am 
]=O 

nme 

au 8 
at 

+ um aUe -- 
hm am 

U2 ah 
--rn m 

u; ahe 
li!FL -Pm=-- 

h,h, an hnhg an phn an 

The first two equations may be rewritten in characteristic 

form using the isentropic relation,dp = a'dp , as 

and 

au um au 
A+-- 
at 

m+Aik 
U; ahe 

hm am ph am=h,hg (3X-) m 

l* um* 
au au 

Pa at + pah am 
-Am= _ 

a (heh,) 

m + fin am h,hIh, am 

(89) 

(90) 

(91) 

(92) 

(93) 

(94) 

(95) 

(96) 

Adding and subtracting these equations yields 
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m 
au 

7 hhmh 
a (hehn) 

nm8 am 

or 

$J+ = 
Dt 

ui ahe _ aum 
h,hgam 

iLJhehn) 

where 
hmhehn am 

,+ e um+2a 
Y-l 

and 
D+ -= um a 
Dt &+-- hm am 

D-J- = u'9 
Dt 

ahg + aurn 
h,hgan 

a (hehn) 
hmhehn % 

where 

J-=u - 2 a m y-l 
and 

D- a %a -= ---_ 
Dt at hm am 

The third equation, (93), is already in characteristic form. 

Dug = _ “cum ahe 
Dt -- 

hghm am 

(98) 

(99) 

(100) 

A fourth characteristic also exists and has been chosen to be 
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Ds 0 Dt= (101) 

which implies that an isentropic flow exists along each streamline from the 

"far-upstream" condition to the computational domain inflow boundary. 

At each point on the inflow boundary four pieces of information 

must be supplied in order to calculate the flow variables. For transonic 

compressor rotors, the upstream meridional Mach number is always less than 

one, and the J- characteristic is an upstream running characteristic. The 

Jf characteristic is always a downstream running characteristic. The charac- 

teristics associated with equations (100) and (101) are simply the convection 

path. Thus three pieces of information may be specified independently at the 

inflow boundary. 

This situation is illustrated for a single spatial dimension in 

Figure 14. For this formulation the solution does not exist for x < 0 and is 

assumed to be known at time level n6t. At the node point (n+l, 1) three 

characteristics are incident: a convection characteristic, an upstream 

running J; characteristic, 
+ and a downstream running Jr characteristic. The 

value of the J; characteristic is known, but the information carried along 

the remaining characteristics must be specified. 

(J:)y+l = (urnIn+' + 2 a n+l 

1 Y-l 1 

n+l (J-$ = [II:+'] - 2 a 2 n 

1 y-l 1 - y-l a2 

(102) 

At the open boundary (j=l>, (u~)~+~ n+l or a may be specified in order 

to determine the Jz 
1 1 

characteristic value. n+l When al is specified, J: 

takes the value: 
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+ 
Jr = J-i + - an+1 4 

Y-l 1 (104) 

When (u ) 
n+l 

ml 
is specified, Jz takes the value 

J+i = 2(um);+l J-i (105) 

For the computer codes described in the report, the inflow boundary 

is assumed to be located far enough upstream that the radius of curvature of 

streamlines is large enough that the curvature term (l/hmh,)(ahg/am) may be 

neglected. The resulting equations describing the upstream flow are: 

D+J+ - o 
Dt 

D-J- - o 
Dt 

( 106) 

(107) 

Due -= 
Dt 

0 (108) 

Ds 
Dt= 

0 (109) 

The constraint equation, equation (94), is not used and the grid is 

constructed such that the hub and tip casing slope are zero at the inflow 

boundary so that ur may be assumed to be zero. 

Two input options are provided in the computer code for specifying 

the inflow boundary condition. The primary option uses the freedom to spe- 

cify a n+l 
1 

to maintain constant values of total pressure and total tem- 

perature at the inflow boundary. The user may specify the values of total 
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pressure and temperature as a function of radius but may not specify the 

inlet velocity. This option is the normal one and does not specify the inlet 

mass flow rate. With some initial conditions, this inflow boundary condition 

option can become unstable. A second option is provided for use with the 

unstable option 1 cases. In option 2, the value of the downstream running 
+ characteristic, J r' is specified directly by specifying the desired value of 

the uniform far-upstream Mach number. The value of the Jz characteristic is 

calculated as: 

J”, = (umlup + 6 aup = 
( 1 
aup a 

0 

Use of option 2 will usually lead to a small total pressure error at the inflow 

boundary. 

0 M L 
2 a 

UP +y-l 1 (110) 

For both options, once values for JE and Ji are known, the values 

of UT+' and a;+' are calculated using equations (102) and (103). The 

values of $+l, n+l n+l 
pl ' el are calculated using the input values of 

total temperature and the isentropic flow relations. The value of 

he F+l is specified by the user and the radial velocity (u )"+l is 
1 

For option 2, the JT 
r1 

assumed to be zero. characteristic value is specified 

by the user, while, for option 1 the Jz characteristic value is selected 

through iteration on the value of n+l a 1 to match the input value of total 

pressure. 

Downstream or Outflow Boundary Conditions 

Outflow boundary condition formulations closely follow the model 

for the inflow boundary conditions, equations (91) through (94). However, 

for subsonic flow, as shown in Figure 15, only one characteristic, J- 
r' 

brings information into the computation domain. For supersonic flow, no 
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characteristics bring information into the computational domain. For sub- 

sonic flow, the information to be specified is the far-downstream static 

pressure, while, for supersonic flow, no downstream boundary condition may be 

imposed. The downstream boundary is assumed. to be located far enough 

downstream that the streamline radius of curvature may be assumed to be zero 

and the radial velocity may be assumed to be zero. The equations to be 

solved are: 

D’J+=, 
Dt (111) 

DUe p-0 
Dt (112) 

and 
Ds 
Dt = 0 

Since the swirl velocity on the outflow boundary is determined by the 

interior solution, the exit static pressure may not be specified arbitrarily 

as a function of radius. To avoid this problem a static pressure on the 

inner casing is specified and the radial static pressure variation is calcu- 

lated from equations (113) and (114). The exit static pressure variation is 

calculated by first extrapolating the theta-averaged values of Jl and u e to 

the last computational plane (j=Nx) from the upstream computational planes 

(j=NX-1 and j-Nx-2). The resulting centrifugal force gradient at the outflow 

plane is balanced by the radial pressure gradient. The radial pressure gra- 

dient is calculated from equation (113), using the extrapolated values of 

% and density, p, by trapezoidal rule integration. The final exit density 

and speed of sound, a, are then calculated using the isentropic flow 
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assumption, equation (114). The exit velocity is then calculated from the 

value of the extrapolated Jl characteristic. The radial velocity is also 

assumed to be zero. 

These boundary conditions are equivalent to the physical 

constraints imposed when a compressor is tested. Inlet or reservoir con- 

ditions are specified, usually atmospheric stagnation conditions, and the 

inlet swirl velocity is specified, usually zero. Downstream of the 

compressor, some throttling device is used to determine the compressor 

operating point. A particular operating point is determined by the fntersec- 

tion of the compressor characteristic and the throttle characteristic. The 

operation of this device could be simulated by specifying either the 

compressor static pressure ratio or the mass flow. It is computationally 

somewhat easier to specify the rotor static pressure ratio. 

No attempt was made to calculate the actual flow at the throttle or 

exit boundary, and hence account for the effect of disturbances there. Such 

a calculation, especially in the strongly rotating flow downstream of the 

rotor, is potentially as difficult as the through-flow calculation itself. 

This simplification does imply some inconsistencies at the boundaries, while 

at the upstream boundary the transmission of acoustic disturbances is 

falsified; at the downstream boundary vorticity convection is distorted. The 

acoustic disturbances carry very little energy and their falsification has 

been shown to have very little influence on the flow over the rotor. When 

the downstream perturbations are not calculated, the effective model of the 

flow beyond the downstream computational boundary is one which is axisym- 

metric and uniform in the streamwise direction. Such a flow can have no 

radial vorticity and is potentially inconsistent with the blade flow solution 
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if that solution requires a significant amount of radial vorticity to be pre- 

sent at the computational boundary. For the present calculations, this 

inconsistency does not appear to be important even though some radial vor- 

ticity is shed by the rotor. 

Kutta Condition 

The Kutta condition, a uniqueness condition imposed on inviscid 

flow solutions in order to approximate the true viscous flow solution, is 

imposed quite simply for the compressor rotors studied. No attempt is made 

to model blunt or cusped trailing edges. Instead, the flow at the last axial 

grid points on the pressure and suction surfaces is assumed to be parallel to 

the blades and to have equal static pressures. This condition is adequate 

for compressor rotors designed to have subsonic outflow, but would require 

modification for turbine blade rows having supersonic outflow. 

Spinners 

Several attempts were made to model a spinner, including one that 

would smoothly merge with the centerline, but these attempts were 

unsuccessful. High radial velocities tended to build up at the points close 

to the centerline, resulting in mass flow defects of the order of 5%. Since 

r=O is a singular point in a cylindrical coordinate system, the implemen- 

tation of boundary conditions at the centerline can pose some problems. In 

addition, the centerline is a stagnation streamline, and stagnation points 

pose stability problems. In view of the above problems, the spinner was 

finally replaced by a cylindrical centerbody with a hub to tip ratio of 0.3. 

Several promising attempts to deal with centerline procedures in a cylindri- 

cal coordinate system have been published (see reference 21 for example), and 

the spinner problem should now be re-examined. 
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COMPUTER CODE DESCRIPTION 

The numerical procedures previously described have been implemented 

in two computer programs. The first, MESH3D, generates the finite difference 

grids, interpolates blade geometry data from manufacturing coordinate sec- 

tions to the finite difference grid, computes blade normal vectors and 

curvatures, and generates coordinate stretching derivatives (aWar) etc. 

The second, BT..ADE3D, generates initial conditions if desired, integrates the 

appropriate equations of motion, and prints a solution matrix. A third pro- 

gram, GIUPH3D, produces two output files which may be used for user defined 

graphics vd produces some rudimentary graphics output. 

Grid Generation Program: MESH3D 

The grid generation program has four important geometric inputs: 

1) (r,z) coordinate pairs describing hub and tip casing shapes; 2) (r,z) 

coordinate pairs describing location of blade row leading and trailing edges; 

3) (r,z) coordinate pairs describing damper geometry where applicable; and 4) 

(r,e,z> coordinates describing the blade row geometry. 

Operation of MRSH3D on these geometric quantities is best described 

using Figure 16 (the axial grid numbering scheme) and Figure 17 (simplified 

MRSH3D flow chart). The input to the main program is the grid numbering 

information, particularly the axial grid numbering scheme, which is necessary 

to size the finite difference grid and control its generation. Subroutine 

XRGRID controls the input of all axisymmetric geometric data and generates 

(r,z) coordinates of the finite difference grid and calculates some of the 

coordinate stretching derivatives [(aX/az>, (aX/ar>, (aR/ar), (aR/az)J. 

Subroutine GALT controls input of blade surface geometry, interpolates this 

data onto the finite difference grid, calculates blade normal vectors, and 
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calculates blade radii of curvature. Subroutine BLDT calculates [(ao/ar), 

(aG/ae), and (aO/az>] and creates an input file for BLADE3D containing all 

the required blade geometry information. Subroutine BUILD calculates hub 

and tip normal vectors as well as the radius of curvature along the axial 

direction, and subroutine SVGRID creates input files for BLADE3D containing 

all required information about grid coordinates. 

Numerical Integration Program: BLADE3D 

The numerical integration program is modular in operation, can be 

executed either on large mainframe computers or on minicomputers with a mini- 

mum of code changes, and is inherently restartable. A simplified flow chart 

of BI.ADE3D is shown in Figure 18. The main program input describes the 

axial grid numbering scheme (which is identical to that of MESH3D), describes 

the operator sequence to be executed, the integration time step, and the 

number of operator sequences to be executed. Subroutine OPEN begins the 

calculation setup Process by reading two data files generated by MESHED 

which describe the blade row geometry. Subroutine START completes the setup 

process either by reading a previous solution matrix (solution vector U at 

all grid points) or generating a new starting solution. Subroutine THREE 

controls printing of starting and final solutions as well as execution of the 

requested operator sequence. The finite difference operators equations 

(40-44) are implemented in subroutines BLOCKX, BLOCKT, and BLOCKR. 

Subroutine CLOSE outputs the final solution matrix. A lengthy calculation 

will usually be run in several sections, and this operation of START and 

CLOSE provides a needed restart capability since the intermediate results are 

available for backup. 
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Graphical Output Program: GRAPH3D 

The graphics output program produces two solution matrix data 

files which contain all information needed for user defined graphics 

packages. The first file contains for each node point in the finite 

difference grid its physical space r,U,z coordinates, the solution vector 

[rp, rpur, rpue, rpuzs rE,] and a modified solution vector [P t' Mr, MU, 

MZ, Ttl. The second file contains the computed streamline positions inside 

the blade row volume. The starting point for each streamline calculation is 

a finite difference grid node at the rotor leading edge. This second file 

contains the (r,U,z) coordinates of a streamline position and the solution 

vector at that point, [rp, rpur, rpuD, rpuz, rEt, Pt, Mr, MS, Ms, Tt]. 

The computed streamline positions thus correspond to the traditional Sl 

and S2 streamsurface definitions. 

In addition to these data files, GFCAPH3D also produces printer/ 

plotter plots of blade surface pressure and Mach number for each radial 

grid plane and each S2 surface. - 

For user convenience, a subroutine, called USERREAD, is included 

with GRAPH3D which may be used to read the two solution matrix data files. 
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INPUT DICTIONARY FOR MESH3D 

Input variables may be described in any consistent set of units 

since the MESH3D and BLADE3D programs contain only non-dimensional units. 

The length scale selected is usually the tip casing radius at the farthest 

point upstream; the velocity scale selected is the stagnation temperature 

speed of sound at this same point. Each time geometric quantities are 

input, a scaling factor 1s required which converts any dimensional 

geometric quantity into a nondimensional quantity. In this way, the most 

convenient set of units may be input for each geometric quantity, which is 

then nondimensionalized by the code. In addition when axial coordinates 

are input, a coordinate system origin adjustment factor is also required. 

This additive factor corrects possible coordinate origin differences bet- 

ween sets of geometric input. The input variables for MESH3D in the 

order they appear in Table 4.1, are the following: 

Main Program Input 

TITLE Title for problem identification, any information may appear in the 

first 70 columns. 

NBL 

NX 

NTH 

NR 

*Nl 

*N2 

Number of blades in row, must be 2 1. 

Number of axial grid planes, must be 3 < NX < 100 - - 

Number of theta grid planes, must be 3 < NTH 5 17 - 

Number of radial grid planes' must be 3 < NR < 18 - - 

Axial plane containing the blade row leading edge 

Axial plane containing the blade row trailing edge 

*Note: N2-Nl must be an even integer L 50. 
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KUTTA 

ILE 

ITE 

SPHALF 

IAN 

IWR 

IrMP 

KX 

Al 

TOL 

Axial plane at which Kutta condition is to be applied. 
KUTTA = N2 normally. 

Axial plane containing the damper leading edge. A value of 
0 indicates no damper. 

Axial plane containing the damper trailing edge. A value 
of 0 indicates no damper. 

Mesh type parameter. If = 0, then first mesh system is 
generated. If = 0.5 the second or staggered mesh system is 
generated. Only the staggered mesh may be used with the 
current version of BLADE3D, so SPHALF = 0.5 should be used. 

Type of transform derivative calculation. If IAN = 0 
then metric calculation done by finite difference method 
using node (r,e,z> positions and if = 1 metric calcula- 
tion is done by analytic functions. IAN = 1 is 
recommended. 

FORTRAN unit number for MESH3D bulk output, may be equal 
to 6 or greater than 9. 

MESH3D debug output flag, allowable values are 

0 => none (recommended value) 
1 => SUBROUTINE GRID output 
2 => SUBROUTINE INTER output 
3 => SUBROUTINE GETTHA output 
4 => SUBROUTINE CALDR output 

5,6 => SUBROUTINE CALDER output 
-1 => All subroutines (not recommended) 

Axial coordinate packing factor. KX = 0.1 corresponds 
to non-packed grids. KX = 3.0 corresponds to highly packed 
grids. See special instruction number 1 for aid in 
selecting KX. 

Radial Grid line relaxation factor, used to make com- 
putational space grid lines approximate Z = constant lines 
near inflow and outflow boundary. A value of 3.0 appears 
to be best. See special instruction number 1 for aid in 
selecting Al. 

Convergence tolerance on axial grid plane positions. A 
value of 0.0001 is a tight tolerance and a value of 0.001 
is recommended. 
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IAB Convergence choice parameter. A value of 0 will cause 
axial plane position calculation to abort after 10 
iterations. Nonconvergence is usually caused by input 
errors in either tip and hub casing positions or leading 
and trailing edge positions. A value of 1 allows uncon- 
verged plane positions to be accepted. IAB = 0 is 
recommenhed. 

Subroutine GRID Input 

HUB Coordinates 

NRH 

SCALE1 

ADJl 

XH and RH 

Number of coordinate pairs describing hub casing contour. 
2 5 NRH 5 50. 

Input hub coordinates will be scaled as: XH = 
(XH + ADJl)/SCALEl 

and 
RH = RH/SCALEl 

Coordinate Pairs describing hub casing contour. 

TIP Coordinates 

NRT Number of coordinate pairs describing tip casing contours. 
2 5 NRT 5 50. 

SCALE2 

ADJ2 * 

Input tip coordinates will be scaled as: 
XT = (XT + ADJ2)/SCALB2 

and 
RT = RT/SCALE2 

XT and RT Coordinate pairs describing tip casing contour. 

Leading Edge Coordinates - See Also Special Instruction Number 2 

NZLE 

SCALE3 

ADJ3 

Number of coordinate pairs describing leading blade edge 
location. _ 2 < NZLE 5 20 

Input leading edge variables scaled as: 
ZLE = (ZLE + ADJ3)/SCALE3 

and 
RLE = RLE/SCALE3 

ZLE and RLE Coordinate pairs describing blade leading edge contour. 
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Trailing Edge Coordinates 

NZTE 

SCALE4 

Number of coordinate pairs describing blade trailing edge 
contour. 2 < NZTE < 20 - - 

Input trailing edge variables scaled as: 
ZTE = (zTE + ADJ4)/SCALE4 

and 
RTE = RTE/SCALE4 

ADJ4 

DAMPER COORDINATES - SKIP IF BLADE ROW HAS NO DAMPER 

Damper Lower Surface 

XTE, ZTE Coordinate pairs describing blade trailing edge contour. 

NZL 

SCALE5 

ADJ5 

Number of coordinate pairs describing damper lower 
surface. 2 < NZL 5 20 - 

Input damper lower surface variables will be scaled as: 
ZLL = (ZLL + ADJ5)/SCALE5 

and 
RL = RL/SCALES 

ZLL; RL Coordinate pairs describing damper lower surface. 

Damper Upper Surface 

NZU Number of coordinate pairs describing damper upper surface. 
2 < NZU < 20 - - 

SCALE6 Input variables will be scaled as: 
ZU = (ZU + ADJ6)/SCALE6 

and 
RU = RU/SCALE6 

ADJ6 

ZU, RU Coordinate pairs describing damper upper surface contour. 

Cl Location of damper in computational space. 0 < Cl < 1.0; 
Cl may take only certain values, see special instruction 
number 3. 

TITLE2 Title Card for blade geometry input set. 

NPTS Number of points on a specification line, see Figure 19 
and special instructions. Maximum value is 25. 

Subroutine CALT Input 
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NL 

SCALE7 

Number of stacked blade sections, see Figure 19. Maximum 
value is 15. 

Input blade data scaled as: 
Z = (Z + ADJ7)/SCALE7 
R = R/SCALE7 

IM Blade geometry input flag, either 0 or 1. 
See discussion below for option forms. 

NBL Number of blades in blade row. 

ADJ7 Coordinate origin adjustment factor. 

MID(I,J,K) Three dimensional coordinate array of blade pressure and 
suction surface positions. First index varies from 1 to 
NL, while second index varies from 1 to NPTS. For the 
third index a value of 1 is used to store radial 
coordinate; .a value of 2 is used to store axial coordinate; 
a value of 3 is used to store theta coordinate of pressure 
surface; a value of 4 is used to store theta coordinate of 
suction surface. See also special 

Variable Comments 

MID(l,J,l) NPTS Z coordinate values 

MID(NL,J,l) NPTS Z coordinate values 

IrlID(l,J,2) NPTS R coordinate values 

MID(NL,J,2) NPTS R coordinate values 

instruction number 4. 

for blade section fl 

for blade section #NL 

for blade section #l 

for blade section #NL 

MID(l,J,3) NPTS values of either BMcL or 9 for blade 
section 81 Ps 

MID(NL,J,3) NPTS values of either 0,,, or 0 for blade 
section #NL L Ps 

MID(l,J,4) NPTS values of either St or Bss for blade 
section 1/l 

MID(NL,J,4) NPTS values of either St or ess for blade 
section #NL 
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Special Notes and Restrictions on Input Variables for HESH3D 

1. The best values of KX and Al can only be determIned by trial 

and error. A small value of RX (0.01) leads to nearly unpacked X-R grids, 

see figure 20. Larger values of KX progressively pack X-R grid planes near 

the blade leading and trailing edges while increasing the grid spacing in the 

far field, see figures 20 and 21. The best value of Al depends on RX and 

should be selected after KX is selected, see figure 22. 

2. Due to the placement of X-O grid planes outside the normal hub 

and tip casings, it is imperative that definitions of blade leading edge and 

trailing edge geometry be continued at least 10 percent oE blade span outside 

the hub and tip casings. 

3. The constant Cl determines the part-span shroud placement in 

computational space. The restriction on shroud placement is that it must lie 

midway between two X-O grid planes. Thus the values oE Cl are restricted to 

FLOAT[(IDL-l>/(NR-2>]. IDL is the number of the X-C grid plane immediately 

below the damper. It is suggested that to generate a grid containing a part- 

span shroud that first a grid without a part-span shroud be generated. The 

values of ILE, ITE, and IDL may then be determined by inspection. 

4. Blade geometry is given by four two-dimensional arrays, each 

row of which describes a blade section. Blade sections are numbered from 1 

to NL. The first blade section at the hub and the last one at the tip shall 

not necessarily conform to the hub or tip casing profile, but may be given 

within the flow region, crossing the boundary, or completely outside of the 

boundary. Column 1 and column 2 are used to describe the axial and radial 
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positions of the blade section, while column 3 and column 4 will describe 

either the angular position of the mean camber line (in radians) and the 

tangential thickness (in radians) of the blade section or the angular posi- 

tion (in radians) of the blade pressure surface and the angular position of 

the suction surface of same blade. Option flag IM = 0 requires mean camber 

line and thickness while IM = 1 requires positions of pressure and suction 

surfaces. See Figure 23 for definition of tangential thickness. These blade 

coordinates are stored in the single three-dimensional array MID(I,J,K). 

5. All variables allocated 5 columns in Table 4.1 are 

integer variables and must be right justified. All variables allocated 10 

columns are real variables which should have decimal point included. 
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Table 4.1. Input Card Format for MESH3D 

Tip Casing Coordinates 

Leading Edge Coordinates 



2; -I- -- 
:l 6 ill ---.. _ 

: NZTEl SCALE4 

t Trailing Edge Coordinates 
! 

*** NOTE NEXT SET OF DESCRIPTOR CARDS *** 

*** ARE PRESENT ONLY IF A DAMPER IS *** 

*** INCLUDED IN THE SOLUTION *** 

Cl . 
I *a------- -.--..- . . ..-_ 2 

76 u-0" 

Damper Lower Surface Coordinates 

Damper Upper Surface Coordinates 

___-__. ---,____- .,~ .,-^- .,__ . __. ., I 

*** NOTE INPUT SEQUENCE RESUMES HERE *** 

*** IF NO DAMPER IS SELECTED *** 
--.-._. I -_-..- ._- _.. . . -.,._ - -. . a. - _ _ 

TITLE2 
_ ", _.. . 
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5 MID(l,l,l) tb MID(NPTS,l,l) NL SETS OF NPTS POINTS. BLADE Z COORDINATES. 1 

/ MID(l,2,1) to MID(NPTS,2,1) 

; MID(l,NL,l) to MID(NPTS,NL,l) 

i MID(1,1,2) to MID(NPTS,1,2) NL SETS OF NPTS POINTS. BLADE R COORDINATES. I , 

: MID(l,NL,2) to MID(NPTS,NL,2) 

MID(1,1,3) to MID(NPTS,l,X) 

-.... I 
MID(l,l,B) to MID(NPTS,1,4 , 

I 
- ___ .__ -- .__._. .- -.-_ __ -. ._.er 

. 

. 

. 

I ----.r-._---L-a-------r .--.... 
MID(l,NT.,,a) to MID(NPTS,NL,dj 

MID(l,NL,x) to MID(NPTS,NL,3) 
_ 1 . 
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INPUT DICTIONARY FOR BLADE3D 

The input variables for BLADE3D, in the order they appear in 

Table 4.2, are the following: 

TITLE Title for problem identification, any information may 
appear in the first 70 columns 

NBL Number of blades in row, must be 2 1 

NX Number of axial grid planes, must be 3 5 NX 5 100 

NTH 

NR 

Number of theta grid planes, must be 3 5 NTH 5 17 

Number of radial grid planes, must be 3 < NR L 18 - 

Nl Axial plane containing the blade row leading edge 

N2 Axial plane containing the blade row trailing edge 

KUTTA Axial plane at which Kutta condition is to be applied. 
KUTTA = N2 normally. 

ILE Axial plane containing the damper leading edge. A value of 
0 indicates no damper. 

ITE Axial plane containing the damper trailing edge. A value 
of 0 indicates no damper. 

IDL Radial grid line below damper, see Figure 16. If no damper 
then IDL = 1. 

IDH Radial grid line above damper, see Figure 16. If no damper 
then IDH = NR. 

IFCL IFCL=O gives non-conservation law form equations, see 
equation 17. IFCF=l gives full conservation la\g form, see 
equation 18. 

IROT 

GAMMA 

If IROT=O the fully unsteady equation sets, equation 17 or 18, 
are used. When IROT=l a pseudo-unsteady equation set is used 
in which the energy equation is replaced with a constant 
rothalpy assumption. 

Ratio of gas specific heats, usually 1.4. 
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W 

CAPPA 

PDOWN 

INOPT 

NUTH 

RUTH, UTHIN 

NTT 

RTT, TTIN 

NPT 

Blade row angular rotation speed parameter equal to 
(Wrti /a,>. 

f 
is rotation speed in radians per second, 

s for upstream tip radius (reference length for non- 
kksional lengths), a is far upstream stagnation speed 
of sound on tip streamlfne (reference velocity for non- 
dimensional velocities). 

Artificial viscosity parameter, usually equal to 0.5. A 
value of 0.1 would be very low damping while a value of 1.0 
would be high damping. 

The static pressure to be set on the last axial grid point 
at the hub radius. This pressure, (P/p a 2), controls the 
blade row pressure ratio. 0 0 

INOPT=l corresponds to inflow boundary condition option 1 in 
which the user specifies the upstream total pressure and 
temperature. INOPT= corresponds to inflow boundary condition 
option 2 in which the user s 

$ 
ecifies upstream total tempera- 

ture and the values of the Jr characteristic (see inlet B.C. 
discussion). 

Number of radial positions and absolute tangential velocity 
pairs which specify inlet tangential velocity as a function 
of radius. If NLJTH=l, a constant value of UTHIN is produced 
and the input value of RUTHis ignored. NUTH must be S 20. 

Radial position and absolute tangential velocity theta averaged. 
UTHIN = UO/ao and RUTU is the scaled radius, RUTH = R/Rref. 

Number of radial positions and total temperature pairs which 
specify inlet absolute total temperature as a function of 
radius. If NTT=l, a constant value of TTIN is produced and 
the input value of RTT is ignored. NTT must be 5 20. 

Radial position and absolute total temperature, theta 
averaged. TTIN is the ratio between the local total tem- 
perature and the reference tern erature. 

P- 
The reference tem- 

perature is defined by a0 = 
radius, RTT = R/R 

yRTo and RTT is the scaled 

ref' 

Number of radial position and total pressure pairs which 
specify inlet absolute total pressure as a function of 
radius. If NPT=l, constant value of PTIN(Jz) is produced 
and the input value of RPT is ignored. NPT must be 120. 
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RPT, PTIN 

RPTyrJRIN 

UPMACH 

DT 

NSTEP 

IBEG 

NOR(I,J) 

IOP J = 1 

IML J=2 

IEX J = 3 

NPl 

CODE(NP1) 

JST(NP1) 

JEND(NP1) 

Radial position and absolute total pressure, theta averaged. 
PTIN is the ratio between the local total pressure and the 
reference stagnation pressure. P 
When INOPT = tref 2, Jz values are input 

= l/y and RPT = R/Rref. 
instead of PTIN. 

Far upstream uniform absolute meridional Mach number. 
only when initial conditions are generated by BIADE3D. 

Used 

Scaled time step to be used. 
is selected by program. 

If DT = 0.0 then time step 

for selecting DT. 
See special instruction for rules 

Number of split operator cycles to be run. Several hundred 
operator cycles are usually required for a solution. Each 
cycle advances the solution several time steps. Solution 
is usually run only a few hundred cycles at a time to pro- 
vide a restart capability. 

If IBEG = 1, a starting solution is generated. 

The MacCormack operator sequence to be run is stored in a 
two-dimensional array, NOR(10,3). Each row specifies an 
operator (X direction, 0 direction or R direction), the 
number of times each operation is to be executed and the 
time step multiple to be used. The entire operator 
sequence is executed NSTEP times. 

The individual codes associated with each row are: 
Operator Code 1+X operator, 2+0 operator and 3+R 
operator 

Time step multiple 

Execution time naultiple 

See special instructions and input card format sheet for 
more information about operator sequence. 

Number of different sets of solution matrix information to 
be printed before operator sequence is begun. 

Determines type of printed solution variables. See special 
instructions for definition of allowed values. 

First axial station to be included in printed information. 

Last axial station to be included in printed information. 
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LST(tiP1) 

LEND(NP1) 

NP2 

NTIMES 

CODE(NP2) 

NST(NP;!) 

JEND(NP2) 

LST(NP2) 

LEND(NP2) 

NP3 

CODE(NP3) 

JST(NP3) 

JEND(NP3) 

LST(NP3) 

LEND(NP3) 

First radial station to be included in printed information. 

Last radial station to be included in printed information. 

Number of different sets of solution matrix information to 
be printed during operator sequence. If NP2 = 0, no inter- 
mediate results are printed. 

Solution matrix is printed before the first operator 
sequence, after NSTEP sequences, and after every NTIMES 
sequence during the solution integration. NTIMES = 0 gives 
no intermediate printed results. 

Determines type of printed solution variables. See special 
instructions for definition of allowed values. 

First axial station to be included in printed information. 

Last axial station to be included in printed information. 

First radial station to be included in printed information. 

Last radial station to be included in printed information. 

Number of different sets of solution matrix information to 
be printed after operator sequence is completed. 

Determines type of printed solution variables. See special 
instructions for definition of allowed values. 

First axial station to be included in printed information. 

Last axial station to be included in printed information. 

First radial station to be included in printed information. 

Last radial station to be included in printed information. 
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Special Instructions for BLADE3D Input 

1. DT is the non-dimensional integration time step. DT = [(6tao>/(rref)l- The maximum DT in the absence of artificial damping or 

shock waves is given by equations 53, 54 and 55 and is printed out with each 

execution of matrix print routine. This maximum value must be reduced by 

approximately 40% for calculations with strong shocks. The suggested maximum 

value of DT is printed at the end of each code run. 

2. The sequence of MacCormack split operators to be run must be 

determined for each case using the principle that (DT)x, (DT)R and (DT)S 

should be as close to the maximum allowed value while maintaining a symmetric 

2 
sequence, as described by MacCormack. See also equation 51. 

Denoting the operators as Lx(DTx), Lo (DTC), LR(DTR), then a simple 

sequence may be written as: 

which advances the solution from time level n to level n + 2. This sequence 

assumes @TX) z @To) and (DTx) z 0.5(DTR) . A more typical 
max ltBX IlElX ITMX 

sequence for transonic compressors arises when 

(DTR) = 10 (DTO) " 20(DTx) . 
max max max 

A suitable, but non-unique, sequence for this case would be: 

-n+ZO 
U 

j 
= [lo Lx(DTx),5L0(2DT&LR(20DT& 5L0(2DT0),10Lx(DTx)1fi; 



65 

In general an operator is described by three parameters: the base time step 

(DT), a time step multiple (1, 2 or 20 above), and an execution multiple (10, 

5 or 1 above). 

The full operator sequence is stored in NOR(I,J) which for above 

example would appear as: 

Operator I=1 I=2 I=3 
Number Operator Time Step Execution 

------- -5Y --- Multiplier Multiple 

J=l 1 1 10 

J = 2 2 2 5 

J = 3 3 20 1 

J = 4 2 2 5 

J = 5 1 1 10 

The operator keys are 1 + Lx, 2 + LC, 3 + LR and the maximum number of opera- 

tors in a sequence is 10. 

4. The value of CODE(I) determines the solution variable to be 

printed. The allowed values are: 
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Value Printed Variables 

1 Conservation variables (rp, rpur, rpu6, rpus, rpE,) 

2 Physical variables (p, ur, uB, us, Et> 

3 Physical variables in coordinate system rotating with 
blade row (p, Mr, MO , M 

rel Z’ 
P) 

4 Physical variables in coordinate system rotating with 
blade row (Pt, Mr, Me 

rel 
, MZ, Tt> 

5 Physical variables in laboratory coordinate system 
(P,, Mr, MO, MZ, Tt) 

In addition, when codes 4 and 5 are selected, a summary of mass-flow-weighted 

axisymmetric variables is presented. 

5. All variables allocated 5 columns in Table 4.2 are integer 

variables and must be right justified. All variables allocated 10 columns 

are real variables and should have decimal point included. 
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Table 4.2. Input Card Format for BLmE3D 

: TITLE 
--.e- ---I_ --.-C__ 

INOPT 

i NUTH 

RUTH(l) UTHIN(1) 
. . . . . . 

RUTH(NUTH) LJTHIN(NlJT~) 

NTT 
I 

RTT(l) TTIN(l) 

. . . . . . 

RTT(NTT) TTIN(NTT: 

R.PT (1) PTIN(l) 

. . 

. . 

. . 

; RI’T WT) PTIN(NPT) 

! UPMACH 

Inlet Swirl Velocity 

Inlet Stagnation Temperature 

1 
1 Inlet Stagnation Pressure 

or J + 

j 
characteristic values r 

I 

i 
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i -‘-----~- - ' DT c [NSTEJ IBEG 
-_._ ,.w...L... . . ..- -.I we...e--C. b-.a..- ..,. - . 

*** UP TO 10 CARDS DESCRIBING 

i- 
i 
i 

*** OPERATOR SEQUENCE ARE NEXT. 

*** SEQUENCE IS TERMINATED BY A BLANK 

*** CARD. SEQUENCE IS STORED IN NOR(I,J 

UP TO 9 MORE DESCRIPTOR CARDS 

BLAN-KCARD , 
..-.-- “-“-. -. . . . -.-_ _c .._... . ___- -_._- .,. -. .- -.-,I 

cc--- ---- d-cLr__l_-p _.-..- . . . . . . . _._._,_ . ! 
***NPl-1 MORE CARDS DESCRIBING TYPE 

;k** OF PRINTED OUTPUT DESIRED BEFORE THE OPERATOR SEQUENCE 
L___--“__--~--.I-.--“.,-_...--- 

‘~~--- 

,.._, _-_ -... .- .-1---“--. 

__-I. ‘.U*-U-IRU-~*.---r--U*~--“~-I- 
*** Nl?2-1 MORE CARDS DESCRIBING TYPE 

*** OF PRINTED OUTPUT DESIRED AFTER THE OPERATOR SEQUENCE 

*** NP3-1 MORE CARDS DESCRIBING TYPE 

*** OF PRINTED OUTPUT DESIRED DURING THE OPERATOR SEQUENCE 
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Data Files Used for MESH3D, BIADE3D and GRAPH3D 

Several data files are used by MESH3D, BLADE3D and GRAPH3D as 

input files, scratch files, and permanent storage files. These files and 

their characteristics are shown below. 

Table 4.3. Data Files for MESH3D 

FORTRAN 
Unit 
Number -~ 

1 

2 

3 

4 

5 
.- - 

6 

8 

9 

12 

IWR 

Type of File 

Scratch 
UNFORMATTED 

Permanent 
UNFORMATTED 

Scratch 
UNFORMATTED 

Permanent 
UNFORMATTED 

Input Data 
FORMATTED 

Output Data 
FORMATTED ~~ ~~~_ -- 

Scratch 
UNFORMATTED 

Scratch 
UNFORMATTED 

Permanent 
UNFORMATTED 

Output Data 
FORMATTED 

Comments 

Used by BLDT 

Used by RGRID, INSEC, GETTHA, CALDR, CALDER 
for scratch file and BLDT for creating file 
TGEOM to be used by BLADE3D 

Used by XRGRID, RGRID, BUILD 

Used by GETTHA, CALDR, CALDER, 
BLDT as scratch file and BUILD for creating 
files GECM (to be used by MESH3D) 

All Input Data in this file. Used by 
MESH3D, BLADE3D, XRGRID, FILL, RMID 

Message and Error file used by all routines 

Used by INSEC, GETTHA, CALDR, CALDER 

Used by CALDER, BLDT 

Used by SVGRID to create file SVSAVE which 
contains r,6,z coordinates of grid nodes 

Used by all routines as an optional bulk 
output file 
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Table 4.4 Data Files for BLADE3D 

FORTRAN 
Unit 
Number Type of File Comments 

1 Permanent Initial solution matrix storage 
UNFORMATTED used by START 

2 Permanent Blade geometry for MESH3D, file TGEOM 
UNFORMATTED used by OPEN 

3 Permanent Axisymmetric geometry file from MESH3D, 
UNFORMATTED file GEOM used by OPEN 

5 

6 

7 

Input Data 
FORMATTED 

Output Data 
FORMATTED 

All input data in this file, used by MAIN 
program and MTHREE 

Used by all routines for Printed Output 

Permanent 
UNFORMATTED 

Final solution matrix written by CLOSE 
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Table 4.5 Data Files for GRAPH3D 

FORTRAN 
Unit 
Number 

1 

2 

3 

4 

5 

6 

7 

8 

t 

I 

Type of File 

Permanent 
UNFORMATTED 

Permanent 
UNFORMATTED 

Permanent 
UNFORMATTED 

Permanent 
UNFORMATTED 

Permanent 
FORMATTED 

Output Data 
FORMATTED 

Permanent 
UNFORMATTED 

Permanent 
UNFORUTTED 

Comments 

Solution Matrix File from BLADE3D 
unit number 7 

File TGEOM from MESH3D unit number 2 

File GEOM from MESH3D unit number 4 

File SVSAVE from MESH3D unit number 12 

Grid Numbering Information from BLADE3D 
unit number 5 

Used for Printed Output 

Solution Matrix Storage for Entire Finite 
Difference Grid 

Solution Matrix Storage .for Sl-S2 Stream 
Surfaces 

Description of Printed Output for MESH3D 

The printed output from MESH3D consists of a message and error file 

which reproduces the axial grid numbering information, a running execution 

sequence log for major subroutines, and a bulk output file. This message 

file is of critical importance in locating input or logical errors in MESH3D 

operation. A sample message file is shown in Figure 24. The initial portion 

reproduces the axial grid input data, and if any parameter is outside of 

allowed ranges an error message will be printed in this file. Program execu- 

tion terminates when an input error is found. After successful completion of 

each principal subroutine a message is printed. This run file also contains 
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a set of warning messages from subroutine CALT which are generated when the 

blade row geometric input data must be extrapolated rather than interpolated. 

Printed values of blade row normal vectors and curvatures should be closely 

monitored to insure that the linear extrapolation performed represents the 

blade row geometry adequately. No further warning or error messages are nor- 

mally produced by CALT, BLDT or BUILD. 

The bulk output from MESH3D reproduces the geometric input data and 

the calculated results from MESH3D. Figure 25 illustrates the raw data input 

check for the hub and tip casing geometry, leading and trailing edge 

geometry, and damper geometry. This data is the "as read" geometry for each 

input data class. Figure 26 illustrates the scaled data smoothness check for 

XRGRID input. This data includes the scaled axial and radial coordinates and 

the first and second derivatives of radial position with respect to axial 

position. Small errors in these input quantities are usually quite apparent 

because of their influence on the second derivatives. The principal output 

from subroutine XRGRID is illustrated in Figure 27 and consists of the axial 

and radial positions of the x and r coordinate line intersections in physical 

space for each axial grid station. The calculated metric derivatives 

(aX/az>, (BX/ar>, (aR/ar) and (aR/az) are also shown. 

Bulk data output for subroutine CALT is the scaled blade row 

geometry as well as first and second derivatives of theta position with axial 

position for both pressure surface and suction surface. Best results from 

the calculation program BLADE3D are obtained when the first and second deri- 

vatives are smooth. When "jumps" in either derivative occur special care 

should be taken to insure that the input data accurately represents the blade 

design intent. This bulk output is illustrated in Figure 28. The blade row 
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normal vectors and radii of curvatures calculated from the input geometric 

data are illustrated in Figure 29. This data is presented for each axial 

grid station inside the blade row. Special attention should be paid to the 

calculated radii of curvatures since small input errors greatly affect their 

value. This output is generated by subroutine BLDT. 

The final bulk output from MESH3D is generated by subroutine BUILD 

and consists of the hub and tip slope and radius of curvature and the value 

of the transformation Jacobian, equation 23, for each axial and radial 

station. This output is illustrated in Figure 30. 

Printed Output for BLADE3D 

The printed output from BLADE3D begins by reproducing the input 

card file directing a particular solution pass. Figure 31 illustrates output 

from this first section. Particular attention should be paid to the printed 

MacCormack Operator sequence to insure that it is the one intended and that 

it is a symmetric sequence. At the user selected axial and radial node 

points, the solution matrix will be displayed for all theta nodes. Figure 32 

illustrates this output section. The content of this printed output, 

variables and coordinate system, is determined by options selected in the 

card input file for BLADE3D. If print option 4 or 5 is selected, then con- 

ventional theta averaged variables (meridional Mach numbers, total and 

pressure and temperature ratios, etc.) are calculated and displayed. This 

output is illustrated in Figure 33. Definitions of printed variables are 

given in special instruction number 4 for BLADE3D. 
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In addition to the user selected printed output, a substantial 

amount of information is printed during the operator sequence in order 

to document the history of a particular calculation. This information 

is printed after each 100 operator sequences and consists of printer/plotter 

plots of mass flow rate vs axial grid plane number, mid-span trailing edge 

static pressure vs operator sequence number and mid-span blade static 

pressure vs axial grid plane number. This information is the best guide 

to solution convergence rate and should be monitored closely. Examples 

of these three informational plots are shown in Figures 34, 35 and 36. 

Output Description for GRAPH3D 

The printed output from GRAPH3D consists of printer/plotter plots 

of blade surface MACH number and static pressure for each Sl surface and 

plots of S2 streamsurface positions for the pressure surface, mid-channel 

surface and the suction surface. Examples of the Sl and S2 surface plots 

are given in Figures 37 and 38. In addition, a summary of Sl streamsurface- 

theta averaged flow variables is presented for the grid planes corresponding 

to the blade leading edge and the blade trailing edge. An example of this 

output is shown in Figure 39. 

Both user defined solution matrix storage files have the same 

format which is specified in Table 4.6. Each FORTRAN record corresponds to 

one grid node point and contains the radial,tangential and axial grid index 

number, the non-dimensional radial, tangential and axial positions, the 

nondimensional conservation variables (rp, rPur, rpue, rpua, rEt) and the 

nondimensional physical flow variables (P,, Mr, Me, Ms, Tt>. The finite 

difference grid output file contains all axial plane numbers 1 through NX. 

The Sl-S2 streamsurface file contains only axial plane numbers Nl through N2. 
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EXAMPLE CALCULATION 

The computer codes described in the previous section were used to pre- 

dict the flow through a low aspect ratio, transonic compressor rotor de- 

signed by Urasek [22] of NASA LEWIS RESEARCH CENTER. This rotor has an 

inlet hub to tip ratio of 0.375, an aspect ratio of 1.56 and an inlet 

relative Mach number of 1.38. In conventional steady state testing at 

NASA LeRC, the rotor was found to have a peak adiabatic efficiency of 

90.6%, a total pressure ratio of 1.686 and a mass flow rate of 34.03 

Kg/set. In Blowdown Tunnel testing at MIT [23], the rotor was found to 

have an adiabatic efficiency of 89.5%, a total pressure ratio of 1.677 

and a mass flow rate of 33.3 Kg/set. 

The calculated operating point for the sample, inviscid calculation 

was set such that the predicted passage shock pattern approximated that de- 

termined in MIT BLOWDOWN COMPRESSOR TUNNEL flow visualization testing [24]. It 

was found to be impossible to match the mid-span bow-shock shape, the 

shape of tip wall static signature and the level of the tip wall static 

measurements. Predicted overall performance parameters were found to be 

a mass flow rate of 35.6 Kg/set, a total pressure ratio of 1.756 and an 

adiabatic efficiency of 94.2%. Having generally the same shock structure 

at a higher mass flow rate and total pressure ratio is consistent with the 

assumption of inviscid flow. 

In order to verify that the calculated flow condition realistically 

represents the test rotor performance, comparisons between calculated and 

measured theta averaged performance is useful. A comparison of relative 

flow angle at the rotor trailing edge is shown in Figure 40 along with the 
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blade metalangles. For R/Pref < 0.90, the inviscid predictions follow the ex- 

pected variation with respect to the metal angles and match the experimental 

values. For ~~~~~~ >0.90, the experimental values show considerably less 

turning than would be expected either from deviation angle correlations 

or the inviscid predictions. The observed flow angle variation is 

difficult to explain on the basis of purely inviscid fluid phenomena, 

since as is shown in Figures 41 and 42, the experimental rotor leading 

edge meridional Mach numbers are nearly identical with the predicted 

values while the experimental total temperature ratios are larger than 

the predicted values. These phenomena suggest that either viscous 

phenomena such as profile boundary layer separation or viscous linked 

phenomena such as boundary layer flow migration significantly affect the 

flow for R/Rref>0.90. 

A comparison of the theta averaged rotor total pressure ratios is 

shown in Figure 43. The inviscid prediction and the NASA LeRC steady 

state measurements compare well over the entire span, while neither 

compares well with the high response total pressure measurements made 

in the MIT BLOWDOWN COMPRESSOR Tunnel. The origin of the high total 

pressure area, R/Rref BO.70, in the MIT data, has not yet been explained. 

Measurements of the blade-to-blade variation in static density have 

been reported in reference [24]. These studies have shown a rotor shock 

system consisting of a moderate strength bow shock at mid-span, a weak 

strength bow shock near the three-quarter span radius and of a secondary 

weak passage shock near the tip section. These characteristics are well 

illustrated in three contour plots, figures 44, 45 and 46, which show the 
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computed relative Mach number on blade-to-blade running surfaces. These 

surfaces have the constant radii of R/Rref = 0.80, 0.90 and 0.95. At an 

R'Rref of 0.80 a strong oblique bow shock is predicted with the flow remaining 

subsonic nearly everywhere downstream of the shock. At an R/Rref of 0.90 

a weak oblique bow shock is predicted, but the flow becomes supersonic in 

a small region near the trailing edge. At an R/Rref of 0.95, a weak bow 

shock is predicted with the flow remaining at supersonic across the entire 

passage. The supersonic region is terminated by a weak compression or shock 

and the flow is subsonic everywhere downstream of the trailing edge. 

To clarify the predicted shock structure, relative Mach number contour 

plots for the pressure and suction surface are shown in figures 47 and 48. 

Figure 47 shows the flow to be subsonic over nearly the entire span. The 

supersonic flow portion is terminated by a weak shock. The suction surface 

flow pattern is much more complex as shown in figure 48. The flow is super- 

sonic over a large fraction of the blade surface with two different passage 

shocks evident. The suction surface shock structure is sketched in figure 

49 which illustrates that the first passage shock, really the bow shock, 

is a strong oblique shock near mid-span and a weak oblique shock near the 

tip section. The two shock families merge near the three-quarter span point 

where the shock turning angles are the same for both families. 
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The intra-blade flow visualization technique does not allow resolution 

of leading edge flow features for R/Rref7 0.85 and high response wall 

static measurements must be used to experimentally probe the shock structure 

near the tip radius. Reference [23] presents wall static measurements at 

the axial locations illustrated in Figure 50, and sample static pressure 

traces are reproduced in Figures 51, 52 and 53. The predicted wall static pressures are also compared to 5 cycle ensemble averages of these data in 

Figures 54, 55 and 56. At the upstream measurement ports 2.0 and 56, the 

shape of the computed wall static pressure trace closely follows the measured 

5 cycle average, but the shock pressure rise is well under-predicted. At 

the mid-chord measurement port 2.5, the shape of the pressure trace is well 

predicted, but the mid-passage pressure level is predicted to be too high. 

In order to clarify the comparison of predicted and measured wall 

static pressures, the port 56 measurement is compared to the computed leading 

edge pressure in Figure 57. This figure shows that the correct bow shock 

pressure rise is predicted, but the predicted bow shock appears at the wrong 

axial position. Since the predicted shock pressure rise is consistent with 

the blade leading edge wedge angle, it must be concluded that the tip bow 

shock is detached in the experiment. The most likely explanation for this 

difference is that the experimental compressor has a tip "end-bend" or 

local over-twist to accommodate a tip end-wall boundary layer. The end- 

wall boundary layer is absent in the MIT test configuration. 
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To complete the documentation of the sample solution, blade surface 

static pressures and blade surface Mach number distributions along each 

radial grid plane are shown in Figures 58 through 87. Figures 58 

through 72 illustrate the static pressure, and Figures 73 through 87 

illustrate the relative coordinate system total Mach number. The nominal 

upstream sonic line occurs at radial plane number 9, but supersonic flow 

extends inward to radial plane number 5. These figures illustrate the 

transition from subsonic flow to supersonic flow; the inviscid calculation 

leading edge resolution in subsonic flow, Figures 59 and 73; and the shock 

resolution, Figure 87. These figures show that the compromises in 

leading edge resolution have not greatly degraded the solution. 



Table 4.6. Format of Solution Matrix Storage File Produced by GRAPH3D 

RECORD 
NUMBER 

1 

2 

. . . 
NTH 

NTH + 1 

. . . 
2NTH 

. . . 
NTH*R 

l+NTH*R 

. . . 
2 *NTH*NR 

. . . 
NX*NTH*NI 

CANGENTIAL STATION 
JUMBERS 
3 INTEGER VALUES 

R k j 

1 1 

1 2 

1 

1 

RADIAL, TANGENTIAL, 
AXIAL POSITIONS 
3 FLOATING POINT 
VALUES 

0.3093, O.,-C.4880 

0.3093, O.,-0.4880 

1 NTH 

2 1 

1 

1 

0.3093, O., -0.4880 

0.3904, o., -0.4790 

2 NTH 1 0.3904, 0.) -0.4790 

NR NTH 

1 1 

1 

2 

1.0407, O., -0.4180 

0.3801,0., -0.4337 

NR NTH 2 1.0408, O.,-0.3536 

NR NTH NX .9796, 0.0, 0.8463 

- 
1 I’ I 
I 

FLOW VARIABLES 
rP, mu r, au 8, rPuz, WE 
5 FLOATING POINT VALUES 

0.270, O.,O., 0.138, 0.493 

same 

0.714, o., o., 0.547, 1.00 

same 

same 

0.337, o., O., 0.179,0.614 

same 

0.714, o., o., 0.547, 1.0 

same same 

0.909, o., 0.,0.466, 1.658 0.714, o., o., 0.539, 0.99 

0.379, -0.10,0.0,0.18, 0.519 0.714, -0.035, O., 0.612, 1.0 

0.817,-0.006,0.001,0.442, 1.55 0.714, -0.015, 0.0, 0.546, 1.0 

1.231,0.,0.426, 0.631, 2.645 1.101, 0.0, 0.345, 0.479, 1.150 

FLOW VARIABLES, LABORATORY 
COORDINATES + Mr 3 Me, MZ 9 Tt 
5 FLOATING POINT VALUES 
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SHCIHING DIFFERENT BOUNDARY TYPES 

,j 
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68x4 

2) j(i-I I(421 --x-m-- 
I I 

$itl,2) ----v- - 
I I 

Ji-I, I) it 1) 4 
7 I 

!( i+l,l) 
I_----------- - 

I I 
BY I 

j(i-l,O) 
I 
1 (LO) 

I 
1 (i+l,O) 

/////////////////////// 

Y(i h 
L x(i 

Solid Wal I -J 

FIGURE 9 EXRHPLE GRID FOR CONTINUITY INTEGRATION 
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BODY SURFACE Inter 

SURFRCE NORtWL VECTOR 

UNIT VECTOR TANGENT TO ?j COCIRDINRTE LINE 

UNIT VECTOR TRNGENT TO q COORDIN,STE LINE 

ior 

FIGURE 10 COOROINRTE SYSTEM FOR H9LL STATIC 

PRESSURE EVRLUATION 



0 .2 .4 .6 .8 1.0 

0 .2 .4 .6 .8 1.0 

Axial Distance/Chord, (X/C) 
FIGURE 11 TYPICAL BLADE SECTION GEOMETRY AND CALCULRTED 

SECOND OERIVRTIVE OF BLADE SURFACE POSITION 

L 
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FIGURE 12 GRID POINT NUMBERING SCHEME FOR STAGGERED GRID SYSTEM 
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Dummy Grid Line 

Blade Surface 

I \- Periodic A 
Boundary 

Dummy Grid Line 
K = NTH 

B I ode Surface 

‘% L Periodic Boundary 
FIGURE 13 BLRDE TO BLRDE VIEH OF STFIGGERED GRID SYSTEM 



Time 4 

Characteristic 

Characteristic 

Axial 

j= I 3 Direction 

FIGURE 14 INFLOH BOUNDRRY CHRRRCTERISTIC FORMULflTION 
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j = NX-2 j=NX-I j=NX axial 
direction 

FIGURE 15 OUTFLOW BOUNOARY CHRRRCTERISTIC FORMULATION 



I I IDH 

IDL 

NI 

! I 
Damper 

I I 
ILE LTE N2 

Axial Stat ion Numbers 
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I 

NX 

FIGURE 16 CClHPUTflTICINRL SPACE GRID NUMBERING SCHEME 
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‘GRID Numbering -+ MESH30 
Description 

b 

/ Axisymmeiric 
Geometric 
I nformot ion 

v 

GRID 
X-R Grid 

w * Posit ions 

V I 
Blade Row 
Geometry 

l--z--l Blade Smoothness _ . 

I 

I nformot ion 
I 

Permanent 
File 

TGEOM 

&Ji(ZrA 

v 
Blade Normal 

L BLDT . Vectors ond 
Curvatures 

Permonent v 
Fi le 

4 BUILD 
Hub and Tip Casing 

GEOM Slopes and 
Curvot ures 

I 

SVGRID 

* 
END 

FIGURE 17 FLCIUCHRRT FOR PROGRRH MESH30 



TGEOM 
V 

w OPEN - 
GEOM 

) START 
, 

S BLOCKX - 

Printed Output r Y 
for Initial 

v 

and Finol - MTHREE + BLOCKT b ‘4-+ 
I I I 

22 END 

FIGURE 18 FLllHCHAFiT FOR PROGRAH BLRDE3D 



--- Finite Difference Grid Lines 

- Blade Specification Lines 

Note: Each Blade Line Must Have The 
Same Number of Input Values. 

FIGURE 19 PLAN VIEW OF BLRDE GEOHETRY SHOWING TYPICFIL POSITIONS 

OF FINITE DIFFERENCE GRID LINES AND BLADE SPECIFICRTION 

LINES 
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I KX=O. 001 

0 A1=0.000 

0 

0 
RI . 
0 
I 

1 
0 
3 

. 
0 

‘-0.50 
I I 

-0.30 -0.10 
II 

0.10 0.30 0’. 50 
I I 

0.70 0.90 
FlXIFlL DISTRNCE 

FIGURE 20 FlXIRL GRID PLRNE SPRCING EXAflPLE 
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0 

g 
0 

El . 
0 I 

0 zr . 
0 I 

KX = 0.5 

I T-- ---~ --_7_ I I 
. SC) -0.30 -0.10 0’. 10 

I 
0.30 0.50 0.70 0.90 

FIXIf?L DISTFlNCE 

i=ICURE 21 RXIRL GRID SPACING EXAMPLE 
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0 
cu 

. 

Kx = 0.01 

Al = 3.0 

0 
3 

. 
01 

‘-0.50 
I 

-0.30 
14 -7 

-0.10 0.10 0.30 0.50 0.70 7.90 
RXIRL DIS'RNCE 

FIGURE 22 AXIRL GRID SPACING EXAMPLE 
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FIGURE 23 BLRDE GEOMETRY INPIJT TRGLE DEFINITIONS 



FIGURE 24 MESH30 RUN LOG FILE 
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HUB AND TIP COORDINRTE INPUT CHECK 

FIGURE 25 HESH3D BULK OUTPUT FILE 



HUBr 

J 
l 
2 
3 
4 
5 
6 
7 
8 
Y 

10 
I1 
1 2 
13 
14 
15 
16 
17 

HUB RND TIP COORDINATE SMOOTHNESS CHECK 

X 
-3.1283 
-1,3.793 
-0 ,520-J 
- 0 3 3 3 2 4 
-0.lii3 
-0 ,OJ.78 

0.0737 
0 , 3 7 % 7 
02717 
0 8 3707 
0.4697 
0 , 36#7 
0.5748 
0*6138 
0.6528 
0+6YJ.7 
l.lIi95 

FIGURE 26 MESH3D BULK OUTPUT FILE 

Y u Y D x D 2 ‘( [I x 
1 l 0000 0 * 0000 0+0000 
1.0000 0.0000 010001. 
1~0000 -0*0001 -0. 0005 
1 l 0000 0 l 0003 010041 
1*0000 -0 l OOOY -0.0159 
0 ,YYYY -tie0006 0.0215 
O.YY6'7 -0.1033 -% l 2653 
0 ,Y7Y5 - 0 , 2 0 3 Y 012448 
O.Y621 -011334 I+1673 
0 , Y 5 35 . s , -0.0520 014784 
O*Y!503 -0,0095 0.3784 
0 , 9 3 0 5 0, 0003 -0.1786 
0.9505 -0,0001 0.0136 
0 .'9 :5 0 5 0.0000 -0,003b 
0 * Y!iO!'i 0 * 0000 0.000Y 
0 + Y 503 0. 0000 o*oooo 
019505 0 ,oooo 0 , 0000 



AXIAL 
ST AI' :C ON 

1 
11 
1 
1 
I 
1 
1 
1. 
1 
1 

FIGURE 27 HESH3D BULK OUTPUT FILE 



INPUT 
L 
1 
1 
1 
1 
1 
1 
.t 
1 
1 
1 
1 
1 
1. 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
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SCALED BLRDE ROW GEIYHERTY 

NASA LOW ASPFrCT RATIO TMli-STAGE -- NEU ROTOR ONE GEONETHY -- 8/28/78 

DATA FOK’ SECTION 1 
H 

0.4014'/ 
0*101%6 
O.;5Y901 
0 l 3 9 7 43 
6. L5Y634 
0 l 39563 

0.39519 
0 I39496 
0.3YSC7 
G,?i9i88 
0.3Y4Yb 
0 I YY505 
b,SY516 
0 , 3 9 5 2 4 
0 0 3Yki2Y 
C) 3 y "i 3 I) \ \ 
ci:39526 
0*3Y528 
O.;JY'jOh 
O*JY4Y 1 
0.3Y487 
0.39492 
0.39518 
0 . .5P SC-l Y 
OIAY5Y';i 

RTHPS KTHSS 
0,003 60 -0.00160 
0.0007:~ -0,00315 

-0.00994 -0.02000 
-0.OlY7d -0.03438 
-0. 02836 -0.04727 
-0.0360.5 -0.03870 
-0.04301 -0.06863 
-0.01931 -0.07719 
-0.05500 -0.08454 
-0.0.5003 -0.09073 
-0.06442 -0.09583 
-0~06813 -0.09984 
-0.07115 -0.10279 
-0.07343 -0.10468 
-0.074Y5 -0r1'0546 
-0.07566 -0.10512 
-0 l 0’7550 -0.30395 
-0.07442 -0.10069 
-0.07233 -0.OY641 
-0.0691'~ . -0*09057 
-0.0646Y -0.08293 
-0*058%1 -0.07315 
-0.05135 -0.06085 
-0*04;!30 -0.04448 
-0rO4179 -0.04331 

J 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

;; 
16 
17 
18 
19 
20 
21 
22 

x I 
0*w1:, 

D Y 0 x D2YUX 
0 l oooci -()+67'2'~ b. -1.7001 
0.0013 0.0008 -0.6754 -3.4001 
0 ., 0 3.7 0 -0 > OOY Y -0.66lY 5.1238 
0.0327 -0.0197 -0.5843 4.7202 
0 , 0 4 8 4 -0.0284 -**:;155 4.0963 
0.0642 -0.0360 -0.4644 2.4397 
0 >07YY -0.04:50 -0*4%21 2.9042 
0.0956 -0.0493 -0.3810 3*3609 
0 > 3. 1. 1 :5 -,) *“i”ic) I I 

-0:0600 
-O.J11% 2.7080 

0.1270 -0s 2YY8 2.5585 
0 + j 4 '2 8 
()* ;& 

-0.0644 -0.2!j-79 2.7705 
-0,068l -0.2141 217YY2 

0 > 3. '7 4 C.? -0,071l -0.1687 2.9773 
011899 -0.0734 - 0 , 1 2 1 2 3.0727 

r: l . 2214 >? 0 "i ' 6 -i, -O.(i74Y * ()'/:jJ) -0.0182 -0.0716 3.2260 A.5723 
0 > :? %3 7 1. -0, or!jg O.Oi588 3.6729 
0.2528 -0.0744 O*OY9A 4.0731 
0 l t26i3r-j -0 * 0723 0.1674 4.5474 
0.2843 -0.0691 0.2414 4.8666 
0 .:4000 -OS0647 () l 3 7 rj.2 5.7928 
0.3157 -0.0588 0.4iY5 6.2089 

FIGURE 28 HESH30 BULK OUTPUT FILE 



CRLCULATED BLADE NORMFlL VECTORS AND CURVRTURES 

NOKIIAL VECTORS ANIl KAu:i :I i:lF (:URuR’fItF\lf: F’(.IK 6jj::Lnl. STRT:i. IJN Nil, .L 0 
L CCISNR I:I)st.IT CUSi.lZ HES RTAlJ 1.. CilSi4H c 0 s ).J ‘,’ c 0 5 >J ;y, R E s RTAU 

PRE’SSURE SIDE NORMAL VECTOR 
1 -0,0?9 0.841 0,532 0 * G 0 0 (,,O(j(j 2 -0,073 0 t 8 ‘.’ 3 0 ‘ 563 0 . 0 0 0 -O,lY8 
4 -0 > 1.49 0 , 767 . 0 + ‘J 6 . . 7 0 + 000 ri 0 7 4 

&y 
5 - a 1.4 2 0 0,&l lj + 7 ‘.) ._ ‘I . . 0 + 000 0,850 

7 -0.070 0,573 O,H17 0,000 8 -.(I< 060 0 + 932 0,845 0 * 0 0 0 0*6Js6 
10 -0,072 0 , 4 3 5 ti . 8 Y 7 0 l 0 0 0 0,000 

FIGURE 29 HESH3D BULK OUTPUT FILE 

CALCULRTED HUB AND TIP CASING SPLOE 

CFILCULRTED TRfINSFOFiti JACOEIIRN VRLUES E 

FIGURE 30 MESH3D BULK OUTPUT FILE 
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3F’ERciTOR SERUENCE IS 
Oi-*E:kA'roR 9 T!T MULTIF'LER F REPEAT COUN-I 

r i3 1:' 1 8 
,j< [j 1:' 1 8 
I( i_; g:' 8 1 
1;: <j i:' 8 1 
y <] 0 1 8 
.r gp 1 8 

DHI:S:r F’Ol’NTS IN X DIRECTION IS 60 
GR 1: D I> C) I NT S I N THE T k D I KE C T I ON IS 17 
(;I< :[ I:I 1:; 0 .I N ‘r S :I: I? R 11 P REC T I 0 14 IS 18 
I’ ti E B 1.. A LIE I_ E AD :L N G A ND T R A I L I NG EDGES k RE AT AXIAL SThTIONS 
THE: F; UT T A I“‘0 I NT I S LOCATED AT AX I AL ST AT I ON 45 
FiRSi EIRMPER STkTI0N IS k‘l 0 
‘IYE: i..hST DAMPER STATION IS GT 0 
::: Jj I... G h4j 1: s 1 
1: D ti 1: G t.1 I s 1 8 
G A PI i'i A I S 1,400 
b 1. A II E S P E E 11 ( W H T 4’ A 0 i I S 1,271 
,q f: ‘r ]: 1: 1 C ,!q L- !J 1 S C 0 S 1 T .j’ F’ A R &, fi E: T E F< !: S 0 , 4 <I ij 
DU:JNSTREAM PRESSURE IS TO !3E SET TO 0,780 
IJ F’ S ‘1’ 12 1:. $j r-j M (9 C 14 N U M I< E R F:’ AR A i”i E 7‘ E. R 3: S 0.510 

UTHETA T T I N 
0 *ooooo 1 ,ooooo 
0,OOGOG 1 l ooooo 
0.00000 1 l OOOOO 
0~00000 1.00000 
o*ooooo 1 ,ooooo 
0*00000 1 ,OOGOO 
0*00000 3. + 00000 
u I 0 0 0 0 0 1 *ooooo 
o*ooooo 1‘00000 
o*ooooo 1 l OOOOO 
0 + 00000 1 l ooooo 
G I00%00 1. + 00000 
0 + GOGOO 1,ooooo 
3 + 0 G 0 0 0 1,ooooo 
0 l O~OOOG 1 e c?ooi)o 
n I 0 0 0 0 0 1 IOOGOO 
G + 0 0 0 0 0 1+00000 
G,OGOOG 1 , OGGOO 

F'TIN OH JPLUS 
5*32000 
5.32000 
5*32000 
5.32000 
5.32000 
5.32000 
5.32000 
5132000 
5,320OO 
5*32000 
5+32000 
5*32000 
5 + 3 2 0 0 0 
5 , -3 " (j 0 () 
5,32OL\() 
?j + 3300() 
S.32OOG 
5 , 3 2 () (j 82 

FIGURE 31 BLHDE3D RUN LOG FILE 



GRID OUTPUT FUR 30 TO 30 IN RFS SYSTEN 
NASA LOW ASPECT RATIO ROTOR TES'I 

30 5 1 2 3 
F'T 0,944 0,740 0,937 
Ml3 0, io2 0,102 0,103 
M T ti 0.355 0,357 0,351 
MX 0 ,521 0,523 0,533 
T T 1,116 1.109 1,103 

FIGURE 32 BLAOE3D BULK OUTPUT FILE 

SOLUTION MATRIX FOR 

AXIAL GRID PLRNE 30 

RADIRL GRID PLANE 5 

NON-DItiENSlONAL FLOW VARIRBLES AT 

TRNGENTRL POINTS I TO 10 
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FIGURE 33 BLADE3D BULK OUTPUT FILE 

THETA RVERAGEO FLOW QURNTITES 

AXIAL GRID PLANE 30 



. ”  AXIAL IGRI11 PI-ni4F 
% ,OHEfOl 3+0!;Etol ] j + 0 ;Lj E + r, 1 

." :I .00Et00 2,07EtOi i: +o;JP:tol fi+ooc:to1 
“. [)+---------+---------f---------f----t---------.~---------t---------to 
- a 2 :? + 8 6 t t t t t t t tt 

. ”  

t 

- l(,(,,>i3 ++ t t t t t tt 
()+---------f---------+---------f----t---------t---------t---------to 

J. , ooEtoo 2 ,QyJI:+<l:l, 4 + 0 3 f t 0 I. 6 + o!if.t01 
% ,08E:t01 Fj + ij!5F:+l21 t.; + o:jbf+() 1 

A X :I !:I I . . i:; k :I: Xl F’ I. I? N E 

FIGURE 3’4 BLRDE3D BULK OUTPUT FILE 

MASS FLOW RATE VS. AXIAL GRID PLRNE 



EZ 
“” 

P 

R “” 

E 

SO.9763 tt 
S "" 

U 
R "" 
E 

“ ”  

. “ .  

“ ”  

0+924Y i-t 3 "t + t t -t t 
o+-""-""""-""""-~"""""""""-""""--f"""""""""".."""""""~ ______ 'L ___-_---_-- j-------.. ---- I---- f ------ ----e-----i-(] 

Il,00Et00 1+73EI+ori. 3,37E..-tOl 5 4 OOE-toi 
9,17E4-00 2, ~~lTg"(j1 4 + :t s E t 0 :1 

1: 7’ E fr’ A T I cl N 
:t 

FIGURE 35 BLADE30 BULK OUTPUT FILE 

TRAILING EDGE STATIC PRESSURE 

VS. ITERATION NUMBER 



FIGURE 36 BLADE30 BULK OUTPUT FILE 

STATIC PRESSURE ON RRDIRL GRID PLANE 5 
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STIGTIL k’HF.SSIIF;E’ i:l:l.V1 J.IE:JI BY F’KEF 
F 1.1 H S :I. S:JHFAL:E 16 

kXIf;i.. JI 1 S T 4 i4 C: E 
5 * t:JE-02 I. l 73E-01 2,?1E-01 

- .J , ;’ ;< I;” -. (, 3 1 I I4!+.-01 2 , ‘3 :? t. - 0 1 3 l :?Of.-01 

o.t---------+---------f---------+----t---------t---------t---------to 

1. I 7 3 8 3 t 4. t t t F t t tt 
. ". 
. P 

F 
“. 

t F' t t 

F'F 
". P 
". F 

P 
t t i -i i- 

t i- t t t 

t 

". 
"" "" 
".. "" 

0 *O~~OO tt t t t t t t + 

FIGURE 37 GRAPH30 BULK CIUTPUT FILE 



2+91E-01 
-4 + 22E-03 l.ll)E-01 2t32E-01 

O+--""""-----f --.-------t---------t---------f---------f-- 
<5'9336 tt 

"" 
". 

". 
"" 

< ?o:Ioi tt 
". 
". 

‘81665 tt 

. . 

f; :,72i332 tt 
il -. 
1:1 "" 

i.! 
;:: I... 

.?.3997 tt 
"" 
__ 
__ 

. 
‘. 5 5 1 .i 2 t t 

-_ 

19 *Kt *a ** 0 
* 

t * 1s XI * 
*;lr I* 

t t t 
tt** at SX% 
** *** *** **** 

ft 4 ;k* z* ** ** 
t t t 
t *t fP t 48 8 YX 

;Kt * * x 1x L * a 
* t i 

* 1 L *i;% x’ I * il: * * 

3,50E-01 
-""----+(-J 

tt 

tt 

"" 

tt 

". 
tt 

"" 

ri; _" 

tt 

.- * 1 t 6 * t t * ;Y 
-” 1 t a :c t 
“. $ x ii: 1: * * 
..” 0 ;li * * 

* 37 ,.*, 93 “1”. % * I t t t t t tt 
C;f”.-“” _““” ----f--““““-----+ .“.” ““c~---“” ~““--‘-“““---““-f”“------- -,-- “-----““--+~ 

-4 * 2ZE-03 1,14E-01 2.32E-03. 3+50E-01 
5, A#:',E""~a2 1.73E-01 2*91E-01 

AXIAL !JISTANCE 

FIGURE 38 GRRPH3D BULK OUTPUT FILE 

STREAMLINE PaSITIClNS 



L RADIUS MACH NUMEiERS F'RESS !.I E 1.. 1 A r.4 fi (.,. E: 5 

1 0,444 
--I & 0,475 
3 0,506 
4 0+?37 
5 0.568 
6 0,398 
7 O,h%Y 
8 0,660 
9 0,691 

10 0,723 
11 0.754 
12 0,786 
13 0,818 
14 0,851 
15 0,883 
16 0.916 
17 0,949 
18 0,984 

MERID 
0,535 
0 I' b? ', r * J 9.. 
0.529 
0,503 
0,483 
0,474 
0,472 
0 , 4 7 3 
0,471 
0,469 
0,468 
0,467 
0,468 
0,471 
0.478 
0.487 
0 ,527 
0 ,523 

FIGURE 39 

T ANGEN T 0 T A !. H A T I 1:i ui4 I hHI:RL. M E F: 1 Ll 
0175 0,924 1,725 0,184 94+6 6 ; 
0,73 0,898 3. . .5 7 5 0,176 53,,'5 8:; 
0.69 0,872 1,730 ,:, + 1 ';;' 2 5 2 , ;: 7.3 
0165 0 + 82.3 Il.+720 0 ‘ 1.75 1:; 2: , 3 6.4 
0 s-61 0.782 1 ( 7 2 2 0,177 51+8 5 * 7 
0+58 0.752 1.735 0+17fj 5 I') , lj# c 1.1 . 1 
0.56 0,730 1,750 o.l.79 49.7 4,s 
0.53 0,710 1*76:3 0,180 48+3 9 + 0 
0.51 0,692 1.775 0,180 47.1 3,s 
0149 0,676 1,784 0,180 46+0 2 , 3 
0.47 0.662 1,786 0,180 45.0 2 + 2 
0*45 0,649 1.773 0,179 44*0 1 e-3 
0144 0,639 1.756 0.176 42.9 0 7 
0.42 0,632 1,729 0,173 41*8 -1:; 
0.41 0,628 1,697 0.169 40,4 -3.0 
0.40 0,629 1.666 0.166 39*3 ,c: cl . 1 
0.37 0.643 1.642 01150 35,o -*8+0 
0.36 0.635 1,352 0,142 34.6 -8+9 

GRAPH30 BULK OUTPUT FILE 

THETA AVERRGED BLRDE ROW PERFORMRNCE 
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0 
iL 
aI 
> .- + 
0 0 
u 
u 

-20 

0 30 MIT 
)( NASA LeRC SS - 
0 MIT Blowdown 

- Blade Angle 

.3 .4 .5 .6 .7 .8 .9 1.0 

R/Rref 

FIGURE q0 NRSfl LOW ASPECT RRTIO ROTOR 

RELATIVE FLOW RNGLE , THETR AVERRGED 

ROTOR TRRILING EDGE 



.80 

.70 

.40 

.30 

# 30 MIT 

NASA LeRC SS 

U 
- A A 

- 

- 

.3 

FIGURE Ul 

.6 .7 .8 .9 

R /Rref 

NASR LOU ASPECT RATIO ROTOR 

HERIDIONRL MACH NUMBER , THETA AVERAGED 

ROTOR LEADING EDGE 

\ 

# 

I 

1.0 



1.40 

0 .- 
2 1.30 

a3 L 
7 + 
0 
5 1.20 
E 
I-” 

P 
r-0 I.10 

1.00 

- 

- 30 MIT 
# NASA LeRC SS 
0 MIT Blowdown 

- 

- 

.3 .4 .5 .6 .7 .8 .9 1.0 

R /Rref 

FIGURE 42 NFlSFl LOW RSPECT RATIO ROTOR 

TOTAL TEtlPERRTURE RATIO , THETR RVERFIGEO 

ROTOR TRRILING EDGE 



2 1.80 + 
or0 
a 
5 
2 1.70 
a, 
a’ 

0 
; 1.60 

1.50 

-3D MIT 
)( NASA LeRC SS 
0 MIT Blowdown 

I .90 
I I 

.3 .4 .5 .6 .7 .8 .9 1.0 
R / Rref 

FIGURE 43 NASR LOW ASPECT RRTIO ROTOR 

TOTAL PRESSURE RATIO , THETA FIVERRGED 

ROTOR TRAILING EDGE 
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-====l.ZU8 

1.2ou 

1.160 

1.116 

1.072 

1.028 

0.964 

0. gull 

0.896 

0.852 

0.808 

0.764 

0.720 

0.676 

0.632 

0.568 

I 1 
NflSR LOW ASPECT RRTIO PDcIk$$ 'to78 

MRCH R 

L.E. RFlDlUS = 0.80 
CONE FINGLE = 0 DEG. 

MRX = 1.4256 
MIN = 0.5827 

UPPER = 1.6000 
LOWER = 0.5000 

FIGURE ‘4q RELFlTIVE MACH NUHBER CONTOUR PLOT 

CCINSTRNT RROIUS SURFACE 
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A I I .I I , , I , 

I ! J NRSR LOI-4 FISPECT RATIO PDOWN=O. 78 

L.E. RRDIUS = 0.90 
CONE RNGLE = 0 DEG. 

MFIX = 1.5117 
MIN = 0.7620 

UPPER = 1.6000 
LOWER = 0.5000 

FIGURE 45 RELATIVE MACH NUMBER CONTOUR PLOT 

CONSTANT RADIUS SURFACE 
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0.896 

0.852 

NRSfl LOW RSPECT RRTIO PDOWN=0.78 
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